
Syncdrive

Synchronous Communications Software

User's Manual

QUATECH, INC. TEL: (330) 434-3154
662 Wolf Ledges Parkway FAX: (330) 434-1409
Akron, Ohio 44311 www.quatech.com

31.1.4 OS/2 .
31.1.3 Windows 95/98 .
21.1.2 Windows 3.1 .
21.1.1 DOS .
21.1 Installation .
11 Introduction .

102.4 BYTE Synchronous - block mode .
82.3 BYTE Synchronous - message mode .
72.2 BYTE Synchronous .
62.1 BIT Synchronous .
52 Synchronous Communications .

373.7 The BufferQueue Structure .
343.6 Byte Synchronous Receive com_block .
303.5 Byte Synchronous Transmit com_block .
273.4 Bit Synchronous Receive com_block .
243.3 Bit Synchronous Transmit com_block .
233.2 The com_block Structure .
123.1 The Channel Configuration Structure .
113 Syncdrive Data Structures .

454.7 Deallocate data structures .
454.6 Release the channel .
444.5 Free buffer queues (if used) .
444.4.2 Using buffer queues .
434.4.1 One frame at a time .
434.4 Transmit and/or receive data .
424.3 Register buffer queues (optional) .
424.2 Configure the channel .
414.1 Allocate data structures .
414 Operational Overview .

505.4.4 Oneshot mode .
505.4.3 Monitor Syncdrive's progress .
495.4.2 Tell Syncdrive to start processing frames
495.4.1 Setup the buffer queue .
495.4 Transmitting or receiving data with a buffer queue
485.3 Restrictions imposed by buffer queues .
485.2 Disposing of buffer queues .
475.1 Creating buffer queues .
475 Buffer Queues .

525.7 Buffer queue performance .
525.6 Reusing a buffer queue .
515.5 Stopping a buffer queue .
515.4.6 Allowing queue overruns .
505.4.5 Ring mode .

556.7 Multiple processes .
556.6 Pointers .
556.5 Buffer queues .
546.4 Multithreaded applications .
536.3 Application termination .
536.2 Buffer memory allocation .
536.1 Application compilation .
536 OS/2 Operation .

597.10 Windows 3.1 applications on Windows 95/98
597.9 Pointers .
597.8 Buffer queues .
597.7 Completion of frames .
587.6 Multithreaded applications .
587.5 Application termination .
587.4 Buffer memory allocation .
577.3 Application compilation for Windows 95/98
577.2 Application compilation for Windows 3.1
577.1 Windows NT (a.k.a. Windows 2000) .
577 Windows 3.1/95/98 Operation .

748.15 sync_command(3) - Change Channel "B" Baud Rate
738.14 sync_command(2) - Change Channel "A" Baud Rate
728.13 sync_command(1) - Set Communications Controller State . .
718.12 sync_command(0) - Get Communications Status
708.11 sync_command - Issue a miscellaneous command
698.10 sync_free_dma_buffers - Free all DMA buffers
688.9 sync_alloc_dma_buffer - Allocate a DMA buffer
678.8 sync_abort_message - Abort current transmission
668.7 sync_receive - Receive a single frame of data
658.6 sync_transmit - Transmit a single frame of data
648.5 sync_release - Close a communications channel
638.4 config_MPAxxx - Open a communications channel
628.3 Examples .
628.2 Return Values .
628.1 Calling Convention .
618 Syncdrive Application Programming Interface

818.21 sync_receive_queue - Start a receive buffer queue
808.20 sync_transmit_queue - Start a transmit buffer queue
798.19 sync_free_queue - Deregister a buffer queue
778.18 sync_register_queue - Create and register a buffer queue . . .
768.17 sync_command(5) - Change Byte Sync Receive Mask
758.16 sync_command(4) - Reset Receiver .

849.1 Tips and Techniques .
839 Building Syncdrive Applications .

8510 Include File Structure .

8911.4 Descriptions of example programs .
8711.3 Building the example programs .
8711.2 Executable files .
8711.1 Source code .
8711 Example Programs .

9312 Definitions .

9713.8 MPAP-200/300 .
9713.7 MPAP-100 .
9713.6 MPA-102 DCE .
9613.5 MPA-102 DTE .
9613.4 MPA-200/300 DCE, MPA-2000/3000 DCE
9613.3 MPA-200/300 DTE, MPA-2000/3000 DTE
9513.2 MPA-100 DCE .
9513.1 MPA-100 DTE .
9513 MPA-Series Adapter Clocking Options

9914 Troubleshooting .

10315 Error Codes .

Copyright 2001, Quatech, Inc.

NOTICE

The information contained in this document cannot be reproduced
in any form without the written consent of Quatech, Inc. Likewise, any
software programs that might accompany this document can be used only
in accordance with any license agreement(s) between the purchaser and
Quatech, Inc. Quatech, Inc. reserves the right to change this
documentation or the product to which it refers at any time and without
notice.

The authors have taken due care in the preparation of this
document and every attempt has been made to ensure its accuracy and
completeness. In no event will Quatech, Inc. be liable for damages of any
kind, incidental or consequential, in regard to or arising out of the
performance or form of the materials presented in this document or any
software programs that might accompany this document.

Quatech, Inc. encourages feedback about this document. Please
send any written comments to the Technical Support department at the
address listed on the cover page of this document.

IBM PCTM, PC-ATTM, PS/2TM , OS/2TM, and Micro ChannelTM are trademarks of
International Business Machines Corporation. WindowsTM is a trademark of Microsoft
Corporation.

1 Introduction

Syncdrive is a synchronous communications software driver
package designed to aid users of Quatech synchronous communication
hardware in the development of their application software. Features of
the Syncdrive driver package include:

? Multiple communication channels using up to six
MPA-series adapters.

? Support for bit-synchronous (SDLC, HDLC) and byte-
synchronous (MONOSYNC, BISYNC) communications.

? DMA capability for bit-synchronous communications.

? User control of most communications parameters.

? Programmer is relieved of the burden of programming the
synchronous communications hardware directly.

? User can change or upgrade synchronous communication
hardware with minimal modifications to the application
software.

? Support for all Quatech MPA-series ISA bus, PCI bus and
PCMCIA adapters.

? Versions for DOS, Windows 3.1, Windows 95/98, and OS/2.

Written specifically for use with C, Syncdrive is also compatible
with other languages that support large model C type subroutine
interfaces.

Syncdrive requires an Intel 80386 processor or later.

1

1.1 Installation

Installation of Syncdrive varies, depending on the operating
system being used. While there is no installation program supplied, the
process is quite simple.

1.1.1 DOS

There is no installation procedure for the DOS version of
Syncdrive. Syncdrive for DOS is shipped as a function library which is
linked directly into the application.

1.1.2 Windows 3.1

Copy the Syncdrive Windows 3.1 DLLs and the Syncdrive VxD to
the \windows\system directory. These files can be found in the \WIN31
directory of disk 1 of the Syncdrive diskette set:

SYNC_31.DLL Syncdrive Windows 3.1 DLL
QTECHDMA.DLL DMA allocation support DLL
SYNC200.386 Syncdrive Windows 3.1 VxD

Find the [386Enh] section of the system.ini file and add the
following line to install the VxD:

device=sync200.386

For the MPA-102 adapter, the VxD file is called SYNC102.386. The
line added to system.ini should be:

device=sync102.386

Windows must be restarted to activate the VxD.

2

1.1.3 Windows 95/98

Copy the Syncdrive Windows 95/98 DLL and the Syncdrive
Windows 95/98 VxD to the \windows\system directory on the Windows
95/98 boot drive. These files can be found in the \WIN95 directory of
disk 1 of the Syncdrive diskette set:

SYNCDRIV.DLL Syncdrive Windows 95/98 DLL
SYNC200.VXD Syncdrive Windows 95/98 VxD

For the MPA-102 adapter, the VxD file is called SYNC102.VXD.

Alternatively, these files may be copied to any directory on the
standard search PATH, or they may reside in the same directory where
the user's application will reside.

The VxD is dynamically loaded by the DLL as needed. There is no
configuration necessary.

1.1.4 OS/2

Install the OS/2 Syncdrive DLL and device driver for the MPA
board in any desired directory. We will assume below that the directory
"c:\syncdriv" is being used.

These files can be found in the \OS2 directory of disk 1 of the
Syncdrive diskette set:

SYNCDRIV.DLL Syncdrive OS/2 DLL
MPA200.SYS Syncdrive OS/2 device driver

Find the LIBPATH statement in the config.sys file and add the
Syncdrive DLL's directory to it:

LIBPATH=(existing directories);c:\syncdriv

Add a device driver statement at the end of the config.sys:

DEVICE=c:\syncdriv\mpa200.sys

For the MPA-102 adapter, the device driver file is called
MPA102.SYS. The line added to config.sys should be:

DEVICE=c:\syncdriv\mpa102.sys

3

Save config.sys, shutdown OS/2, and reboot. The device driver
will display a boot-time message indicating its installation.

4

5

2 Synchronous Communications

Most data communications in personal computers is handled
asynchronously using standard comm ports. With asynchronous
communication, data is transferred one character at a time and with
significant overhead due to the addition of start and stop bits required for
each character. These additions can decrease the rate of data transfer by
20% or more.

In contrast, synchronous communication transfers data in a format
referred to as a "frame". Each frame consists of a block of data plus a fixed
amount of overhead from the insertion of control, synchronization, and
error detection characters. Since the amount of overhead is independent
of the data block size, the percentage of the total transfer time devoted to
the frame overhead diminishes as the size of the data block increases.

Synchronous communication is further divided into bit
synchronous and byte synchronous transfers. Bit synchronous transfers
treat the data block as a series of data bits with no specific character
boundaries while byte synchronous transfers treat the data block as a
series of fixed length characters.

Syncdrive can transfer data in bit synchronous and byte
synchronous modes. The bit synchronous mode may be used to
implement such protocols as SDLC or HDLC while the byte synchronous
mode may be used to implement protocols such as BISYNC. Syncdrive
does not implement any specific protocol itself, but will support most
protocols implemented by the application software.

6

2.1 BIT Synchronous

Syncdrive's bit synchronous mode generates a frame formatted
according to Figure 1.

flagCRCDataflag

Figure 1 - Syncdrive bit synchronous frame format.

The frame's start flag and end flag characters are used by the
hardware for synchronization purposes. When the application transmits a
block of data these flag characters are automatically appended to the
frame. When receiving a frame, these flag characters are automatically
removed from the frame before being returned to the application.

The frame's CRC bytes are used for error detection purposes.
When transmitting a block of data the CRC is automatically generated and
transmitted after all of the data has been sent. When receiving a frame the
CRC is automatically checked to determine if the frame was corrupted. If
a CRC error occurs, Syncdrive indicates this error in the buffer_status
variable of the com_block structure, which is discussed beginning on
page 23.

IMPORTANT!

When receiving a frame, the CRC bytes are returned to the
application program as part of the data block. The allocated

receive buffer must be large enough to hold the received data
plus these two additional bytes. The application may ignore the

CRC bytes as their validity is determined by Syncdrive.

The frame's data area is the buffer provided to Syncdrive by the
application. This buffer is the comm_buffer array of the com_block
structure. When transmitting, the application must allocate a com_block
structure and load the data block into the comm_buffer array. When
receiving, the application must allocate a com_block structure with a
large enough comm_buffer array to hold the received data PLUS the
received CRC.

7

2.2 BYTE Synchronous

Syncdrive's byte synchronous mode offers the user two different
frame formats. Both byte synchronous modes are discussed in the
following sections.

Message mode provides the application with a minimal byte
synchronous frame format and the hardware calculation and verification
of transmit and receive CRCs. Message mode can be used to relieve some
of the frame formatting burden from the application.

Block mode uses no frame format or hardware CRC generation.
Block mode gives the application full control over the format and
generation of the communication frames.

8

2.3 BYTE Synchronous - message mode

The format of the frame generated by Syncdrive's byte synchronous
message mode is shown in Figure 2.

PadsCRCEDIDataSDISync(s)

Figure 2 - Syncdrive's Byte Synchronous message mode format.

The frame's initial sync character(s) are used by the hardware for
synchronization purposes. When transmitting, the application defines the
value to be interpreted as the sync character in the channel configuration
structure. Syncdrive automatically adds the number of sync characters
specified in the com_block structure to the beginning of the frame. When
receiving, the application must define the value(s) to be interpreted as
sync characters using sync_command number 5 (see page 76). The sync
characters are automatically removed from the frame before the data
block is returned to the application.

The frame's SDI, or start of data indicator, is a special event
character used by Syncdrive to identify the beginning of the data block.
When transmitting, the SDI character specified in the com_block structure
is automatically added to the frame. When receiving, the application
must define the value(s) to be interpreted as an SDI character using
sync_command(5). When an SDI character is received, Syncdrive
initializes the receiver's CRC and begins a new CRC calculation with the
next received character. The SDI character is also returned to the
application as part of the received data block.

 The frame's EDI, or end of data indicator, is a special event
character used by Syncdrive to identify the end of the data block. When
transmitting, the EDI character specified in the com_block structure is
automatically added to the frame. When receiving, the application must
define the value(s) to be interpreted as EDI characters using
sync_command(5). When an EDI character is received, Syncdrive assumes
that the data block is complete and that the next two characters are the
frame's CRC. The EDI character is also returned to the application as part
of the received data block.

The frame's CRC bytes are used for error detection purposes.
When transmitting a block of data, the CRC bytes are automatically
generated and transmitted after all of the data has been sent. When
receiving a frame the CRC is automatically checked to determine if the
frame was corrupted. If a CRC error occurs, Syncdrive indicates this error
in the buffer_status variable of the com_block structure.

9

IMPORTANT!

When receiving a frame, the SDI, EDI, and CRC bytes are returned
to the application as part of the data block. The allocated receive
buffer must be large enough to hold the received data plus these
four additional bytes. The application may ignore the CRC bytes

since their validity is determined by Syncdrive.

The frame's pad character(s) are used to indicate the end of the
frame and place the communication link in the idle state. When
transmitting, the application defines the value to be interpreted as the pad
character in the channel configuration structure. Syncdrive automatically
adds the number of pad characters specified in the com_block structure to
the end of the frame. When receiving, the application must define the
value(s) to be interpreted as pad characters using sync_command(5).
Syncdrive automatically removes all of the pad characters from the frame
before the data block is returned to the application.

The frame's data area is the buffer provided to Syncdrive by the
application. This buffer is the comm_buffer array of the com_block
structure discussed beginning on page 23. When transmitting, the
application must allocate a com_block structure and load the data block
into the comm_buffer array. When receiving, the application must
allocate a com_block structure with a large enough comm_buffer array to
hold the received data PLUS the received SDI, EDI, and CRC bytes.

10

2.4 BYTE Synchronous - block mode

The frame format for Syncdrive's byte synchronous block mode is
determined by the application and is treated by Syncdrive as a block of
raw unformatted data. The general structure is shown in Figure 3.

Data

Figure 3 - Syncdrive's byte synchronous block mode format

The byte synchronous block mode frame is the comm_buffer
provided to Syncdrive as part of the com_block structure discussed
beginning on page 23. When transmitting, the application must allocate a
com_block structure and load the entire frame, including any sync, pad,
and CRC bytes, into the comm_buffer array. When receiving, the
application must allocate a com_block structure with a large enough
comm_buffer array to hold the entire received frame, including all sync
characters, pad characters, and CRC bytes.

A block mode frame is transparent to Syncdrive. The application is
responsible for all data formatting and interpretation. For example, to
send a standard BISYNC protocol frame, the application must place at
least two sync characters at the start of the buffer. These are followed by a
start of data indicator (SDI) of 02H and the actual message being sent. The
message is followed by an end of data indicator (EDI) 03H and the CRC.
Note, in this mode the CRC must be calculated by the application and
then placed in the buffer after the end of data character. Following the
CRC, pad characters of FFH could be used.

To receive the same message in block mode, all of the SYNC, SDI,
EDI, CRC, and pad characters are placed in the buffer. It is then up to the
application to interpret them. Likewise, the CRC of the received data
must be calculated and checked against the received CRC (which is also
in the buffer following the EDI character).

Actually, however, the SYNC characters preceding the frame do not
appear in the buffer because Syncdrive uses the sync character load
inhibit feature of the SCC. This feature is automatically turned off when
the first non-SYNC character is received.

Independent of the contents of the data block used in block mode,
it is recommended that at least two SYNC characters be inserted at the
beginning of the data. This will ensure that no data will be lost during
receiver synchronization.

11

3 Syncdrive Data Structures

Syncdrive operations are largely based on three key data
structures. These structures are defined in the MPA-X00.H and
SYNCDRIV.H include files.

? channel_cfg - channel configuration

This structure defines hardware dependent and protocol
dependent information. It includes information on baud
rate, interrupts, DMA channels, and protocol information.

? com_block - message block and configuration

This structure defines a particular frame that is being sent or
received. It includes information concerning buffer status,
control options, and the actual buffer that holds the message
data.

? BufferQueue - queues of com_block structures

This structure is used when nonstop processing of frames is
desired. It allows multiple com_block structures to be used
in one transmit or receive operation.

12

3.1 The Channel Configuration Structure

The channel configuration structure is used to tell Syncdrive how
the application wishes to configure a communication channel. It is
allocated by the application. The application must completely initialize
the structure before it can be used to configure the channel. A pointer to
the channel configuration structure is passed to most Syncdrive API
functions in order to identify the channel being operated on.

The channel configuration structure is shown in Figure 4. It is
defined in the MPA-X00.H include file.

struct channel_cfg
 {
 unsigned char signature;
 unsigned char structure_type;
 unsigned short board_number;
 unsigned char channel_number;
 unsigned char operating_mode;
 unsigned char line_control;
 unsigned char options;
 unsigned short base_address;
 unsigned char tx_dma_channel;
 unsigned char rx_dma_channel;
 unsigned char tx_interrupt;
 unsigned char rx_interrupt;
 unsigned char crc_mode;
 unsigned char clock_source;
 unsigned long clock_rate;
 unsigned long rx_baud_rate;
 unsigned long tx_baud_rate;
 unsigned long read_timeout;
 unsigned long write_timeout;
 unsigned char sync_char_1;
 unsigned char sync_char_2;
 unsigned char protocol_dependent0;
 unsigned char protocol_dependent1;
 unsigned char protocol_dependent2;
 unsigned char protocol_dependent3;
 unsigned char protocol_dependent4;
 unsigned char protocol_dependent5;
 unsigned char protocol_dependent6;
 unsigned char protocol_dependent7;
 #if defined(_WINDOWS) && !defined(__WIN95__)
 WIN_HANDLE (res0, res1) // Windows 3.1 only
 #endif
 void far * pt1;
 void far * pt1a;

Figure 4 - Channel Configuration Structure

13

3.1.1 signature

Must be set to 0xCC.

3.1.2 structure_type

Choose the appropriate value for the particular MPA-series
adapter being used. These values are defined in the SYNCDRIV.H
include file.

The MPAC-100 PCI adapter is functionally equivalent to the
MPAP-100 PCMCIA adapter. Use MPAP100_ID for the MPAC-100.

MPA100_ID
MPA200_ID
MPA102_ID

MPAP100_ID
MPAP200_ID

3.1.3 board_number

Every MPA-series adapter installed in the system must have a
unique board_number. Valid values range from 0 to 5.

3.1.4 channel_number

This variable is set to 0 for channel A of a particular board
(designated by a unique board_number), or to 1 for channel B. Only the
MPA-102 has a channel B. This variable must be set to 0 for all other
MPA-series adapters.

14

3.1.5 operating_mode

Specifies the operating mode of the SCC.

Bit Sync w/8-bit flags 0 0 0 1 ----
BISYNC w/16 bit sync 0 0 1 0 ----
MONOSYNC w/8-bit sync 0 1 0 0 ----
FM0 Data Modulation2---- 1 1 --
FM1 Data Modulation2---- 0 1 --
NRZI Data Modulation1---- 1 0 --
NRZ Data Modulation---- 0 0 --
Reserved------ 0 0

ModeD0D1D2D3D4D5D6D7

1 The clock_source field must be set to X32 Clock Source and RX CLK SRC =
DPLL for NRZI data modulation (Value = 10011111B).
2 The clock_source field must be set to X16 Clock Source and RX CLK SRC =
DPLL for FM1 and FM0 data modulation (Value = 01011111B).

3.1.6 line_control

Defines the data format of the serial data.

Even Parity 1 1 ------
Odd Parity 1 0 ------
No Parity 0 0 ------
Reserved-- 0 0 ----
8 bit receive data---- 1 1 --
6 bit receive data---- 0 1 --
7 bit receive data---- 1 0 --
5 bit receive data---- 0 0 --
8 bit transmit data------ 1 1
6 bit transmit data------ 0 1
7 bit transmit data------ 1 0
5 bit transmit data------ 0 0

Data format D0D1D2D3D4D5D6D7

15

3.1.7 options

Defines other communications options.

Reserved 0 0 0 0 ----
Loop Back Enable---- 1 ---
Auto Echo Enable ----- 1 --
Address Enable------ 1 -
Auto Enables------- 1

Status InformationD0D1D2D3D4D5D6D7

Auto Enables --- when set, the SCC's CTS input becomes a transmitter
enable and its DCD input becomes a receiver enable.

Address Enable --- when set, and if in SDLC (bit sync) mode, the hardware
will ignore any frames with SDLC secondary addresses not matching the
value programmed into the sync_char_1 field.

Auto Echo Enable --- when set, TxD and RxD are internally connected,
plus the receiver continues to listen to the external RxD pin. Transmitted
data is not seen inside or outside the SCC, and CTS is ignored as a
transmit enable. (This option has little use for most applications.)

Loop Back Enable --- when set, local loopback is enabled. TxD and RxD
are internally connected, and transmitted data is also routed to the
external TxD pin. The CTS and DCD signals are ignored as transmit and
receive enables. (This option has little use for most applications.)

16

3.1.8 base_address

The base I/O address of the communication hardware. This value
must correspond to the switch setting on the MPA-series adapter.

3.1.9 tx_dma_channel

The DMA channel to be used for bit synchronous transmission.
This variable must be set to correspond to the jumper setting on the
MPA-series adapter. It should be set to 0 if DMA is not being used for
transmit.

DMA cannot be used for byte-synchronous transmission. This
variable must be set to 0 if byte-synchronous transmission is selected.

Because the PCMCIA bus does not support DMA, this variable
must be set to 0 when a PCMCIA MPA-series adapter is used.

If communications are full duplex, different DMA channels must
be chosen for transmit and receive.

3.1.10 rx_dma_channel

The DMA channel to be used for bit synchronous reception. This
variable must be set to correspond to the jumper setting on the
MPA-series adapter. It should be set to 0 if DMA is not being used for
receive.

DMA cannot be used for byte-synchronous reception. This
variable must be set to 0 if byte-synchronous reception is selected.

Because the PCMCIA bus does not support DMA, this variable
must be set to 0 when a PCMCIA MPA-series adapter is used.

If communications are full duplex, different DMA channels must
be chosen for transmit and receive.

17

3.1.11 tx_interrupt, rx_interrupt

The IRQ level to be used for transmitting and receiving. These
variables must be set to correspond to the jumper setting on the
MPA-series adapter. For PCMCIA MPA-series adapters, the setting must
correspond to the value set by client driver.

MPA-series adapters use only one IRQ. Therefore, the tx_interrupt
and rx_interrupt variables must both be set to the same value.

3.1.12 crc_mode

Specifies the type of CRC calculation to be performed. Typically,
CRC-16 initialized to all 0's is used for byte synchronous formats and
CCITT CRC initialized to all 1's is used for bit synchronous formats.

CCITT CRC (SDLC) 0 1 ------
CRC-16 1 0 ------
No CRC 0 0 ------
Reserved-- 0 0 0 0 0 -
Initialize CRC to all 1's------- 1
Initialize CRC to all 0's------- 0

Status InformationD0D1D2D3D4D5D6D7

18

3.1.13 clock_source

Sets the source of the transmit and receive data clocks. Bits 6-7
select the rate of the clock relative to the data rate. The clock mode for
most applications will be x1 unless NRZI or FM data encoding is used
(see discussion of operating_mode on page 14).

Bits 3-5 select the source of the received data clock. The RTxC and
TRxC pins can be used to receive this clock from the connector. The
receive data clock can be self-sourced from the SCC's baud rate generator
(BRG) or the DPLL. If clock signals are not present on the connecting
cable, or if they are to be ignored, the BRG option is generally suitable
and easy to use.

Bits 0-2 select the source of the transmit data clock. The RTxC and
TRxC pins can be used to receive this clock from the connector. The
transmit data clock can be self-sourced from the SCC's baud rate generator
(BRG) or the DPLL. If clock signals are not present on the connecting
cable, or if they are to be ignored, the BRG option is generally suitable
and easy to use.

Available clock options differ amongst the various models of
MPA-series adapters. The options are explained beginning on page 95.

Tx clock source = DPLL 1 1 ------
Tx clock source = BRG 0 1 ------
Tx clock source = TRxC pin 1 0 ------
Tx clock source = RTXC pin 0 0 ------
Input Tx clock-- 0 -----
Output Tx clock-- 1 -----
Rx clock source = DPLL--- 1 1 ---
Rx clock source = BRG--- 0 1 ---
Rx clock source = TRXC pin--- 1 0 ---
Rx clock source = RTXC pin--- 0 0 ---
Input Rx clock----- 0 --
Output Rx clock----- 1 --
x64 Clock Mode------ 1 1
x32 Clock Mode------ 0 1
x16 Clock Mode------ 1 0
x1 Clock Mode------ 0 0

Status InformationD0D1D2D3D4D5D6D7

19

20

The digital phase locked loop (DPLL) feature can be used in the
FM0, FM1, and NRZI modes. To enable the DPLL set operating_mode
(see page 14) to the desired modulation method. The Rx clock source
should be set to select the DPLL. Also, the following rules governing the
clock oversampling rate with the chosen modulation method must be
followed:

x16FM1
x16FM0
x32NRZI
x1NRZ

Clock ModeData Encoding

Syncdrive always uses the BRG input for the DPLL, so the baud

rate must be set for x16 or x32 the actual data rate.

For example, to run the receive to demodulate bit synchronous
FM0 modulated data, use the DPLL as the clock source the with the clock
oversampled in x16 mode. The following variables could be set:

 operating_mode = 0x38; // FM0 mode
 // Bit Sync w/8 bit address

 clock_source = 0x5F; // x16 clock,
 // input Rx clock
 // Rx clock source = DPLL output
 // output Tx clock
 // Tx clock = DPLL output

3.1.14 clock_rate

The frequency of the clock oscillator on the MPA-series adapter.
Syncdrive uses this value in its baud rate divisor calculations. The factory
default clock rate is 9.8304 MHz, or 9830400. Other clock rates are
available upon request. The value of this variable must match the
frequency of the clock oscillator!

3.1.15 rx_baud_rate, tx_baud_rate

The desired baud rate of the receiver and transmitter. If the
desired baud rate does not allow for an integer baud rate divisor,

21

Syncdrive will program the hardware for the achievable baud rate closest
to that desired.

Each channel runs using a single baud rate generator. The
rx_baud_rate and tx_baud_rate variables should be set to the same value.
On single-channel MPA-series adapters, the baud rate generators of both
the "A" and "B" channels of the SCC are set to this value.

3.1.16 read_timeout

For Syncdrive for OS/2, this is the number of milliseconds to wait
for a frame to be received. The calling thread is blocked during this
interval. If this value is 0, a sync_receive call will return immediately, just
as it always does under DOS. If this value is -1, the timeout is infinite.

 If not under OS/2, this variable should be set to 0.

3.1.17 write_timeout

For Syncdrive for OS/2, this is the number of milliseconds to wait
for a frame to be transmitted. The calling thread is blocked during this
interval. If this value is 0, a sync_transmit call will return immediately,
just as it always does under DOS. If this value is -1, the timeout is
infinite.

If not under OS/2, this variable should be set to 0.

3.1.18 sync_char_1

The Tx sync character for MONOSYNC operation, the lower 8 bits
of the Tx/Rx sync character for BISYNC operation, or the secondary
address for bit sync operation.

? MONOSYNC - 8 bit Tx sync character

? BISYNC - 8 LSBs of 16 bit Tx/Rx sync character

? bit sync - secondary address

3.1.19 sync_char_2

The Rx sync character for MONOSYNC operation, or the upper 8
bits of the Tx/Rx sync character for BISYNC operation. For bit sync
operation this variable must be set to the flag character of 0x7E.

? MONOSYNC - 8 bit Rx sync character

? BISYNC - 8 MSBs of Tx/Rx sync character

? bit sync - must be 0x7E (flag character)

22

3.1.20 protocol_dependent

These variables represent one of several things, depending on
which mode the application is using.

protocol_dependent0
BISYNC: Pad character - This is the character that is

appended to the end of the BISYNC frame
when in message mode.

protocol_dependent1
BISYNC: 0 = Include STX in the CRC calculation.

1 = Do NOT include the STX in the CRC
 calculation. (Standard BISYNC)

protocol_dependent2
HDLC: 0 = Idle line with syncs (flags)

1 = Idle line with marks (all 1s)

protocol_dependent3 (reserved)

protocol_dependent4 (reserved)

protocol_dependent5 (reserved)

protocol_dependent6 (reserved)

protocol_dependent7 (reserved)

3.1.21 res0, res1, ptr1, ptr1a

Fields used internally by Syncdrive. These fields must not be
modified or referenced by the application program.

23

24

3.2 The com_block Structure

The com_block structure is used to transfer data blocks between
the application and Syncdrive's transmit and receive routines. A
com_block structure is allocated by the application by either a simple
declaration as a global variable or by a call to the C runtime library malloc
function. Using DMA requires the application to allocate com_block
structures with the sync_alloc_dma_buffer function.

Four protocol-specific versions and two generic versions of the
com_block structure are overlaid using a union declaration. This permits
Syncdrive to use the generic forms internally while the application uses a
version more suited to the protocol being used. The union declaration in
the SYNCDRIV.H include file is shown in Figure 5.

union com_block
{
struct MsgBuf A; // Generic, short

names.
struct GenMsgBuf B; // Generic, long names.
struct BitTMsgBuf BitT; // Bit synchronous transmit.
struct BitRMsgBuf BitR; // Bit synchronous receive.
struct ByteTMsgBuf ByteT; // Byte synchronous transmit.
struct ByteRMsgBuf ByteR; // Byte synchronous receive.

Figure 5 - The com_block union

IMPORTANT!

The application may inspect a com_block structure
at any time but MUST not modify its contents after
transmit or receive operations have been started.

25

3.3 BIT SYNCHRONOUS TRANSMIT com_block

The com_block structure definition for the bit synchronous
transmit mode is shown in Figure 6.

struct BitTMsgBuf
 {
 #if defined(_WINDOWS) && !defined(__WIN95__)
 WIN_HANDLE (BufferHNDL, res0) // Windows 3.1 only
 #endif
 unsigned int buffer_length;
 unsigned int buffer_pointer;
 unsigned char buffer_status;
 unsigned char buffer_error;
 unsigned char idle_flag;
 unsigned char reserved_char_1;
 unsigned char reserved_char_2;
 unsigned char reserved_char_3;
 unsigned char reserved_char_4;
 unsigned char reserved_char_5;
 unsigned char reserved_char_6;
 unsigned char dma_page;
 unsigned int dma_offset;
 unsigned char comm_buffer[buffer_size];
 };

Figure 6 - Bit sync Tx com_block structure

3.3.1 BufferHNDL (Windows 3.1 only)

Present only in the Windows 3.1 version of Syncdrive for backward
compatibility with versions of Syncdrive prior to release 4.00. Newly
written Windows 3.1 applications should treat this field as reserved.

3.3.2 buffer_length

The number of bytes in the data block. The application must
initialize buffer_length to the length of the data block contained in
comm_buffer. The application may inspect buffer_length at any time but
MUST NOT modify its contents while the transmission is in progress.

26

3.3.3 buffer_pointer

Byte offset into the comm_buffer array of this structure. This
variable gets initialized to zero when a transmit operation begins.
Syncdrive updates buffer_pointer as each character is transmitted. If
DMA is being used, this variable is not updated. The application may
inspect buffer_pointer at any time but MUST NOT modify its contents
while the transmission is in progress.

3.3.4 buffer_status

Current status of the communication buffer. The application must
set this to zero before starting the transmission. The application software
may inspect buffer_status at any time but MUST NOT modify its contents
after a transmission has started.

Frame Timeout (OS/2) 1 -------
Error-- 1 -----
Transmitted Abort--- 1 ----
Transmitting CRC----- 1 --
Transmitting Data------ 1 -
Done------- 1

Status InformationD0D1D2D3D4D5D6D7

3.3.5 buffer_error

Indicates an error condition has arisen with respect to Syncdrive's
handling of the com_block structure. The application must set this field
to zero before starting the transmission, and should not attempt to modify
its contents after the transmission has started.

If the TX_RETRANSMITTED bit (0x01) is set, this com_block was
retransmitted when a ring mode transmit buffer queue overran and the
overrun was permitted. See page 51 for details.

3.3.6 idle_flag

Specifies which state the transmit line should assume after
completing the data transfer. If idle_flag is 0, the transmitter will keep the
line active by continuously sending sync or flag characters after the data
transfer is complete. If idle_flag is any non-zero, the transmitter will be
disabled after transmission, causing the line to assume an idle state.

27

3.3.7 reserved_char_x

Reserved for future use. All reserved_char fields must be set to 0.

3.3.8 dma_page, dma_offset

Used internally by Syncdrive. These variables must not be
changed by the application.

3.3.9 comm_buffer[]

Unsigned character array containing the data to be transmitted.
The size of comm_buffer is user defined with the restriction that the entire
com_block structure must reside in a single 64 Kbyte segment. The size
of comm_buffer is configured at compile time by the buffer_size define
statement (default 1000 bytes) found in the SYNCDRIV.H include file.

28

3.4 BIT SYNCHRONOUS RECEIVE com_block

The com_block structure definition for the bit synchronous receive
mode is shown in Figure 7.

struct BitRMsgBuf
 {
 #if defined(_WINDOWS) && !defined(__WIN95__)
 WIN_HANDLE (BufferHNDL, res0) // Windows 3.1 only
 #endif
 unsigned int buffer_length;
 unsigned int buffer_pointer;
 unsigned char buffer_status;
 unsigned char buffer_error;
 unsigned char reserved_char_1;
 unsigned char reserved_char_2;
 unsigned char reserved_char_3;
 unsigned char reserved_char_4;
 unsigned char reserved_char_5;
 unsigned char reserved_char_6;
 unsigned char reserved_char_7;
 unsigned char dma_page;
 unsigned int dma_offset;
 unsigned char comm_buffer[buffer_size];
 };

Figure 7 - Bit sync Rx com_block structure

3.4.1 BufferHNDL (Windows 3.1 only)

Present only in the Windows 3.1 version of Syncdrive for backward
compatibility with versions of Syncdrive prior to release 4.00. Newly
written Windows 3.1 applications should treat this field as reserved.

3.4.2 buffer_length

The number of bytes in the receive buffer. The application must
initialize buffer_length to the length of the available receive buffer. The
application may inspect buffer_length at any time but MUST NOT modify
its contents while the reception is in progress.

29

3.4.3 buffer_pointer

Byte offset into the comm_buffer array of this structure. This
variable gets initialized to zero when a receive operation begins.
Syncdrive updates buffer_pointer as each character is received. If DMA
is being used, this variable is updated at the end of the message after all
frame characters have been received. The application may inspect
buffer_pointer at any time but MUST NOT modify its contents while the
reception is in progress.

3.4.4 buffer_status

Current status of the communication buffer. The application must
set this variable to zero before starting the reception. The application may
inspect buffer_status at any time but MUST NOT modify its contents after
the reception has started.

Frame Timeout (OS/2) 1 -------
Error (CRC or Rx overrun)-- 1 -----
Received Abort--- 1 ----
Receive Buffer Full---- 1 ---
Receiving CRC----- 1 --
Receiving Data------ 1 -
Done------- 1

Status InformationD0D1D2D3D4D5D6D7

3.4.5 buffer_error

Indicates an error condition has arisen with respect to Syncdrive's
handling of the com_block structure. The application must set this field
to zero before starting the transmission, and should not attempt to modify
its contents after the transmission has started.

If the RX_OVERWRITTEN bit (0x01) is set, this com_block was
overwritten when a ring mode receive buffer queue overran and the
overrun was permitted. See page 51 for details.

3.4.6 reserved_char_x

Reserved for future use. All reserved_char fields must be set to 0.

30

3.4.7 dma_page, dma_offset

Used internally by Syncdrive. These variables must not be
changed by the application.

3.4.8 comm_buffer[]

Unsigned character array used to hold the received data. The size
of comm_buffer is user defined with the restriction that the entire
com_block structure must reside in a single 64 Kbyte segment. The size
of comm_buffer is configured at compile time by the buffer_size define
statement (default 1000 bytes) found in the SYNCDRIV.H include file.

31

3.5 BYTE SYNCHRONOUS TRANSMIT com_block

The com_block structure definition for the byte synchronous
transmit mode is shown in Figure 8.

struct ByteTMsgBuf
 {
 #if defined(_WINDOWS) && !defined(__WIN95__)
 WIN_HANDLE (BufferHNDL, res0) // Windows 3.1 only
 #endif
 unsigned int buffer_length;
 unsigned int buffer_pointer;
 unsigned char buffer_status;
 unsigned char buffer_error;
 unsigned char idle_flag;
 unsigned char misc_options;
 unsigned char reserved_char_1;
 unsigned char message_type;
 unsigned char message_sdi;
 unsigned char message_edi;
 unsigned char num_syncs;
 unsigned char sync_count;
 unsigned char num_txpads;
 unsigned char txpad_count;
 unsigned char comm_buffer[buffer_size];
 };

Figure 8 - Byte sync Tx com_block structure

3.5.1 BufferHNDL (Windows 3.1 only)

Present only in the Windows 3.1 version of Syncdrive for backward
compatibility with versions of Syncdrive prior to release 4.00. Newly
written Windows 3.1 applications should treat this field as reserved.

3.5.2 buffer_length

The number of bytes in the data block. The application must
initialize buffer_length to the length of the data block contained in
comm_buffer. The application may inspect buffer_length at any time but
MUST NOT modify its contents while the transmission is in progress.

32

3.5.3 buffer_pointer

Byte offset into the comm_buffer array of this structure. This
variable gets initialized to zero when a transmit operation begins.
Syncdrive updates buffer_pointer as each character is transmitted. The
application may inspect buffer_pointer at any time but MUST NOT
modify its contents while the transmission is in progress.

3.5.4 buffer_status

Current status of the communication buffer. The application must
set this variable to zero before starting the transmission. The application
may inspect buffer_status at any time but MUST NOT modify its contents
after a transmission has started.

Frame Timeout (OS/2) 1 -------
Error-- 1 -----
Transmitted Abort--- 1 ----
Transmitting CRC----- 1 --
Transmitting Data------ 1 -
Done------- 1

Status InformationD0D1D2D3D4D5D6D7

3.5.5 buffer_error

Indicates an error condition has arisen with respect to Syncdrive's
handling of the com_block structure. The application must set this field
to zero before starting the transmission, and should not attempt to modify
its contents after the transmission has started.

If the TX_RETRANSMITTED bit (0x01) is set, this com_block was
retransmitted when a ring mode transmit buffer queue overran and the
overrun was permitted. See page 51 for details.

3.5.6 idle_flag

Specifies which state the transmit line should assume after
completing the data transfer. If idle_flag is 0, the transmitter will keep the
line active by continuously sending sync characters after the data transfer
is complete. If idle_flag is any non-zero value, the transmitter will be
disabled after transmission, causing the line to assume an idle state.

33

3.5.7 misc_options

If bit 0 of this field is set to 1, the block mode byte streaming
feature is enabled. When the end of the comm_buffer is reached,
buffer_pointer is reset to 0 and the data in the buffer is transmitted again.
Transmission of the frame can be stopped by calling sync_abort_message.
The message_type field must be set for block mode for this feature to be
enabled. All other bits in this field are reserved for future use and should
be set to 0.

3.5.8 message_type

Specifies the type of frame to be transmitted. If message_type is 0,
the data block will be transmitted using byte synchronous message mode.
If message_type is any non-zero value, the data block will be transmitted
using byte synchronous block mode.

3.5.9 message_sdi

Defines the SDI byte to be used for this message. If block mode is
specified in the message_type field, message_sdi is ignored.

3.5.10 message_edi

Defines the EDI byte to be used for this message. If block mode is
specified in the message_type field, message_edi is ignored.

3.5.11 num_syncs

Specifies the number of sync characters to be transmitted before the
SDI byte is sent. The total number of syncs will be (num_syncs + 2). On
block mode transmit two sync characters will be sent out ahead of the
block.

3.5.12 sync_count

Used by Syncdrive to record the number of sync characters already
sent. The application may inspect sync_count at any time but MUST NOT
modify its contents after a transmission has started.

3.5.13 num_txpads

Indicates the number of pad characters with which to terminate a
message mode frame. This minimum value for this variable is 1.

34

3.5.14 txpad_count

Used by Syncdrive to record the number of pad characters already
sent. The application may inspect txpad_count at any time but MUST
NOT modify its contents after a transmission has started.

3.5.15 reserved_char_x

Reserved for future use. All reserved_char fields must be set to 0.

3.5.16 comm_buffer[]

Unsigned character array used to hold the transmitted data. The
size of comm_buffer is user defined with the restriction that the entire
com_block structure must reside in a single 64 Kbyte segment. The size
of comm_buffer is configured at compile time by the buffer_size define
statement (default 1000 bytes) found in the SYNCDRIV.H include file.

35

3.6 BYTE SYNCHRONOUS RECEIVE com_block

The com_block structure definition for the byte synchronous
receive mode is shown in Figure 9.

struct ByteRMsgBuf
 {
 #if defined(_WINDOWS) && !defined(__WIN95__)
 WIN_HANDLE (BufferHNDL, res0) // Windows 3.1 backward compat.
 #endif
 unsigned int buffer_length;
 unsigned int buffer_pointer;
 unsigned char buffer_status;
 unsigned char buffer_error;
 unsigned char reserved_char_1;
 unsigned char misc_options;
 unsigned char reserved_char_2;
 unsigned char message_type;
 unsigned char reserved_char_3;
 unsigned char reserved_char_4;
 unsigned char num_pads;
 unsigned char pad_count;
 unsigned char block_term;
 unsigned char reserved_char_5;
 unsigned char comm_buffer[buffer_size];
 };

Figure 9 - Byte sync Rx com_block structure

3.6.1 BufferHNDL (Windows 3.1 only)

Present only in the Windows 3.1 version of Syncdrive for backward
compatibility with versions of Syncdrive prior to release 4.00. Newly
written Windows 3.1 applications should treat this field as reserved.

3.6.2 buffer_length

The number of bytes in the receive buffer. The application must
initialize buffer_length to the length of the available receive buffer. The
application may inspect buffer_length at any time but MUST NOT modify
its contents while the reception is in progress.

3.6.3 buffer_pointer

Byte offset into the comm_buffer array of this structure. This
variable gets initialized to zero when a receive operation begins.
Syncdrive updates buffer_pointer as each character is received. The

36

application program may inspect buffer_pointer at any time but MUST
NOT modify its contents while the reception is in progress.

3.6.4 buffer_status

Current status of the communication buffer. The application must
set this variable to zero before starting the reception. The application may
inspect buffer_status at any time but MUST NOT modify its contents after
the reception has started.

During receive operations, the CRC error bit is set while receiving
and may be cleared, depending on whether CRC checking was done on
the message and whether the message correctly received. Thus if a
BISYNC message was received that does not include a CRC (indicated by
the lack of a ETX character in the message), the Error bit will remain set
and the Receiving CRC bit will remain cleared. If the CRC was checked,
the Receiving CRC bit will be set and then the Error status can be used to
indicate a good/bad status on the message.

Frame Timeout (OS/2) 1 -------
Error (Rx overrun)-- 1 -----
Received Abort--- 1 ----
Receive Buffer Full---- 1 ---
Receiving CRC----- 1 --
Receiving Data------ 1 -
Done------- 1

Status InformationD0D1D2D3D4D5D6D7

3.6.5 buffer_error

Indicates an error condition has arisen with respect to Syncdrive's
handling of the com_block structure. The application must set this field
to zero before starting the transmission, and should not attempt to modify
its contents after the transmission has started.

If the RX_OVERWRITTEN bit (0x01) is set, this com_block was
overwritten when a ring mode receive buffer queue overran and the
overrun was permitted. See page 51 for details.

3.6.6 misc_options

If bit 0 of this field is set to 1, the block mode byte streaming
feature is enabled. When the end of the comm_buffer is reached,

37

buffer_pointer is reset to 0 and the data in the buffer is overwritten.
Syncdrive does not try to detect the block_term character when byte
streaming. Reception of the frame can be stopped by calling
sync_command(4). The message_type field must be set for block mode
for this feature to be enabled. All other bits in this field are reserved for
future use and should be set to 0.

3.6.7 message_type

The type of frame to be received. If message_type is 0, the data
block will be received using byte synchronous message mode. If
message_type is any non-zero value, the data block will be received using
byte synchronous block mode.

3.6.8 num_pads

The number of pad characters to be received before determining
that the communication line has entered the idle state. In block mode, this
number of block_term characters must be seen consecutively for the
message to terminate.

3.6.9 pad_count

Used by Syncdrive to record the number of pad characters already
received. The application may inspect pad_count at any time but MUST
NOT modify its contents after the reception has started.

3.6.10 block_term

Used by Syncdrive as the block mode termination (pad) character.
In block mode receive, the message reception will be terminated when
this character is received num_pads times consecutively.

3.6.11 reserved_char_x

Reserved for future use. All reserved_char fields must be set to 0.

3.6.12 comm_buffer[]

Unsigned character array containing the data to be received. The
size of comm_buffer is user defined with the restriction that the entire
com_block structure must reside in a single 64 Kbyte segment. The size
of comm_buffer is configured at compile time by the buffer_size define
statement (default 1000 bytes) found in the SYNCDRIV.H include file.

38

3.7 The BufferQueue Structure

The BufferQueue structure is used to allow a Syncdrive
application to transfer multiple data frames with one Syncdrive function
call. A buffer queue is comprised of a number of com_block structures
and the control information contained in a BufferQueue structure, shown
in Figure 10.

The application must allocate the com_block structures to be used
by the queue. BufferQueue structures are created by Syncdrive when the
application calls the sync_register_queue function. BufferQueue
structures are deallocated by calling the sync_free_queue function. A
BufferQueue structure should be considered read-only by the
application.

IMPORTANT!

 The application may inspect the BufferQueue structure
at any time but MUST not modify its contents after a

transmit or receive operation has been started.

The BufferQueue structure and the queue-related Syncdrive
function prototypes are defined in the SYNCDRIV.H include file.

struct BufferQueue
{

 unsigned long NumberOfPointers; // Number of com_block pointers in this
// structure.

 unsigned long CurrentBuffer; // Buffer number (starting with 0) that
// Syncdrive is currently processing.

 unsigned long NotifyThreshold; // Reserved. DO NOT MODIFY!
 unsigned long QueueStatus; // Overall status of the buffer queue.
 unsigned long QueueMode; // Oneshot or ring.

 union com_block _far * (_far *ComBlockPtrs); // Reserved. DO NOT
MODIFY!
 union com_block _far * (_far *res1); // Reserved. DO NOT MODIFY!

#ifdef __OS2__
 void _far * (_far *LockHandlePtrs); // Reserved. DO NOT
MODIFY!

Figure 10 - BufferQueue structure

39

3.7.1 QueueHNDL

 Present only in the Windows version of Syncdrive. It is used
internally by Syncdrive and is a reserved field that must not be used by
the application.

3.7.2 NumberOfPointers

The number of com_block structures that the buffer queue is
managing.

3.7.3 CurrentBuffer

The com_block structure currently being processed by Syncdrive.
The first structure is designated as buffer 0. The last structure is buffer
(NumberOfPointers - 1). The application should monitor the value of
CurrentBuffer in order to determine when to take action as frames are
processed by Syncdrive.

3.7.4 NotifyThreshold

Reserved for future use.

3.7.5 QueueStatus

Bitmapped status indicators, defined in the SYNCDRIV.H include
file as follows:

QUEUE_DONE Queue is stopped. If no error bits are
set, all buffers have been processed.

QUEUE_RUNNING Queue is active. CurrentBuffer
indicates the com_block currently being
processed.

QUEUE_HALTED Queue was stopped because the
application called sync_command(4) or
sync_abort_transmit. The most recent
frame is likely to be incomplete.

QUEUE_ADVANCED For Syncdrive internal use only.

QUEUE_OVERRUN Queue's supply of available
com_blocks was exhausted.

QUEUE_ERROR Generic error indicator.

QUEUE_NULL_BUFFER Com_block buffer_length of 0 found.

40

ALL OTHER BITS ARE RESERVED FOR FUTURE USE!

41

3.7.6 QueueMode

Bitmapped options, described in the SYNCDRIV.H include file,
that indicate the operating modes of the queue.

QUEUE_RING Queue is running in a continuous
ring mode until stopped by the
application or until a
QUEUE_OVERRUN status occurs.
CurrentBuffer will wrap to buffer 0
when the end of the queue is
reached.

QUEUE_ONESHOT Queue is running in a oneshot
mode. All com_block buffers will
be processed one time.

QUEUE_RECEIVE Queue is being used for receive.

QUEUE_TRANSMIT Queue is being used for transmit.

QUEUE_ALLOW_OVERRUN Allow com_block reuse or
overwrite on queue overrun.

ALL OTHER BITS ARE RESERVED FOR FUTURE USE!

3.7.7 ComBlockPtrs

Pointer to an array of far pointers to com_block structures. This
pointer and the array it references should never be changed by the
application.

3.7.8 res1

Reserved pointer. The application should not reference or change
this pointer.

3.7.9 LockHandlePtrs

Present only in the OS/2 version of Syncdrive. It is used internally
by Syncdrive and is a reserved field that must not be used by the
application.

42

43

4 Operational Overview

Listed below is an outline of the basic steps that an application
must take to transmit or receive data frames using Syncdrive.

1. Allocate data structures.

2. Configure the channel.

3. Register buffer queues (optional).

4. Transmit or receive data.

5. Free buffer queues (if used).

6. Release the channel.

7. Deallocate data structures.

4.1 Allocate data structures

4.1.1 Channel Configuration Structure

Each channel to be used requires its own channel configuration
structure. This structure is discussed on page 12.

The channel configuration structure(s) may be defined as static
data or may be allocated dynamically using standard memory allocation
procedures. The structures may be initialized using standard 'C'
language conventions at declaration time if a fixed configuration is
desired, or during program execution. The application must ensure that
the entire structure is initialized.

4.1.2 Com_block Structures

Each com_block structure provides one transmit or receive buffer
which can contain one frame worth of data. The com_block structure is
discussed beginning on page 23. The application can allocate as many
com_block structures as it needs, limited by the amount of available
system memory.

There are different protocol-specific versions of the com_block
structure that can be used by the application. The various versions are
defined as a UNION. The application should use the appropriate
protocol-specific version of the com_block structure.

44

The com_block structure may be statically allocated by declaring a
union of type com_block, or may be dynamically allocated by having the
malloc function return a pointer to a union of type com_block. These two
methods will work if Syncdrive operation is going to occur completely
under interrupt control.

If DMA is used for transmitting or receiving frames (non-zero
values in tx_dma_channel or rx_dma_channel in the channel
configuration structure), the com_block structures MUST be
allocated using the sync_alloc_dma_buffer command.

4.2 Configure the channel

A communications channel must be configured before it can be
used to transmit or receive data. This is Syncdrive's "logical open" step.
To configure a channel, the application must allocate and initialize a
channel configuration structure. The channel is uniquely identified by the
board_number and channel_number variables in the channel
configuration structure.

The channel is configured by passing a pointer to the channel
configuration structure to the config_MPAxxxx function. The actual name
of this function is dependent on the particular MPA-series adapter being
used. If the config_MPAxxxx function returns the SYNC_SUCCESS code,
the channel is ready for use.

Note, once a channel is configured, the channel configuration
structure must not be modified until the sync_release function has
been executed. Failure to follow this rule will cause improper
channel operation.

4.3 Register buffer queues (optional)

Use of buffer queues is optional. If the application plans to use
buffer queues, it should register them at this point. Each channel can
have one registered buffer queue for transmit and one registered buffer
queue for receive. Attempts to register multiple queues will be rejected.

45

4.4 Transmit and/or receive data

After configuration, the channel is ready for data traffic. Syncdrive
can operate in two different ways. The "classic" Syncdrive operation is
one frame at a time, using the sync_transmit and sync_receive functions.
It is also possible to process multiple frames with one operation by using
buffer queues in conjunction with the sync_transmit_queue and
sync_receive_queue functions.

4.4.1 One frame at a time

The sync_receive and sync_transmit functions initiate the reception
and transmission of single data frames, using a single com_block
structure.

To transmit a block of data, the application copies the data to be
transmitted into the comm_buffer array in the com_block structure and
sets the buffer_status variable to zero. The application then calls the
sync_transmit function. The sync_transmit function immediately returns
to the caller while Syncdrive transmits the frame in the background.

The application must monitor the buffer_status variable in order to
determine when the frame has been completely transmitted. When
buffer_status indicates TxDone, then the information that was stored in
the comm_buffer array has been transmitted. The application should also
check buffer_status for any errors reported.

To receive data, the application ensures that the buffer_status
variable in the com_block structure is set to zero and then calls the
sync_receive function. The sync_receive function immediately returns to
the caller while Syncdrive receives the frame in the background.

The application must monitor the buffer_status variable in order to
determine when the frame has been completely received. When
buffer_status indicates RxDone, the received data can be transferred out
of the comm_buffer array and passed on to the application program. The
application should also check buffer_status for any errors reported.

IMPORTANT!

The contents of the com_block structure must not be
modified while a transmission or reception is in progress!

46

The parameters that are part of the com_block structure may be
modified before the sync_transmit or sync_receive functions are called
and after buffer_status has indicated that the frame is done. This
capability could be useful for protocols such as BISYNC in that Syncdrive
allows for dynamic alteration of some protocol parameters. For example,
the application could change between message and block mode
immediately preceding the starting of reception or transmission of a
buffer. Also, the changing of special characters in the BISYNC receive
mask may be done just prior to the start of data reception.

Under OS/2, the sync_transmit and sync_receive functions can be
made to block until the frame is completed. This is useful in
multithreaded programs because it allows an application to eliminate the
polling of the buffer_status variable.

4.4.2 Using buffer queues

The sync_receive_queue and sync_transmit_queue functions
initiate the reception and transmission of multiple data frames, using an
array of com_block buffers. Buffer queues must be registered before
these functions can be successfully called.

Please refer to the chapter on Buffer Queues, starting on page 47,
for full details on how to use this feature.

4.5 Free buffer queues (if used)

If any buffer queues were registered using the sync_register_queue
function, the sync_free_queue function must be called for each queue.
Freeing the buffer queue does not deallocate any of the member
com_block structures.

47

4.6 Release the channel

The sync_release function is used to reset the hardware, unhook
interrupts, and disable all Syncdrive operations. This is Syncdrive's
"logical close" step. The application must not attempt to use the channel
again after releasing it.

It is best if the application ensures that all communications activity
is stopped before calling the sync_release function. This can be
accomplished by calling the sync_abort_message and sync_command(4)
functions as appropriate.

4.7 Deallocate data structures

Before terminating, the application should free all channel
configuration and com_block structures that it has allocated.

If any com_block structures were allocated using the
sync_alloc_dma_buffer function, the sync_free_dma_buffers
function must be called to free them.

48

5 Buffer Queues

Syncdrive's normal mode of operation processes one com_block
structure at a time. For applications where frames appear on the
communications link with short inter-frame intervals, this can be a
problem, especially on the receive side. The application may receive a
frame successfully, but may not be able to issue another call to
sync_receive before the next frame starts to come in. Less often, on the
transmit side, the same difficulty can cause unacceptable idle periods
between frames.

Buffer queues allow the application to setup multiple com_block
structures ahead of time and have Syncdrive process them in a batch.
When a buffer queue is used, after a frame is completely processed,
Syncdrive will immediately start to process the next com_block structure.

A buffer queue is essentially a list of com_block structures. Each
com_block structure in the buffer queue is allocated and accessed by the
application in the same fashion as a "stand alone" com_block structure
would be.

The operation of the buffer queue is configured and monitored
through a BufferQueue structure (see page 37). The application does not
directly allocate the BufferQueue structure.

5.1 Creating buffer queues

The application must determine how many frame buffers will be in
the buffer queue, and then allocate one com_block structure for each
buffer. The pointers to these com_block structures are placed in an array.
The com_block pointer array and some control information are passed as
parameters to the sync_register_queue function. The sync_register_queue
function creates and initializes a BufferQueue structure. A pointer to the
BufferQueue structure is returned to the application.

49

5.2 Disposing of buffer queues

After the application is finished with the buffer queue, the
BufferQueue structure is deregistered and deallocated by calling the
sync_free_queue function. The application should ensure that
communications activity is stopped before freeing the buffer queue. This
can be done by calling the sync_abort_transmit and sync_command(4)
functions as necessary before calling sync_free_queue.

5.3 Restrictions imposed by buffer queues

When the sync_register_queue function is used to create and
register a buffer queue, the operating modes of the buffer queue are fixed.
If an operating mode needs to be changed, the buffer queue must be freed
and a new one registered.

Each channel can have one buffer queue registered for transmit and
one buffer queue registered for receive. The transmit and receive buffer
queues are completely independent of each other, so it is possible to use
a buffer queue in one direction but not use one in the other direction.

It is not possible to mix buffer queue and single-frame operation
on the fly. If a buffer queue is registered for receive operation, calls to the
sync_receive function will be rejected. If a buffer queue is not registered
for receive operation, calls to the sync_receive_queue function will be
rejected. The same rule applies to transmit operations.

50

5.4 Transmitting or receiving data with a buffer queue

5.4.1 Setup the buffer queue

The application must allocate a sufficient number of com_block
structures. The buffer_status variable in each com_block structure must
be set by the application to 0. For transmit, the data for each frame must
be placed into the comm_buffer arrays in the various com_block
structures. The buffer queue should then be registered by calling the
sync_register_queue function.

5.4.2 Tell Syncdrive to start processing frames

The sync_transmit_queue function initiates the transmission of the
data frames contained in the comm_buffer arrays of the com_block
structures in the registered transmit buffer queue. Syncdrive
continuously transmits frames until the queue is exhausted or stopped.
The sync_transmit_queue function immediately returns to the caller while
Syncdrive processes the queue in the background.

The sync_receive_queue function initiates the reception of data
frames. Frame data will be placed in the comm_buffer arrays of the
com_block structures in the registered receive buffer queue. Syncdrive
continuously receives frames until the queue is filled or stopped. The
sync_receive_queue function immediately returns to the caller while
Syncdrive processes the queue in the background.

IMPORTANT!

The contents of the BufferQueue structure must not be
modified while a transmission or reception is in progress!

51

5.4.3 Monitor Syncdrive's progress

The application should monitor the QueueStatus variable in the
BufferQueue structure. QueueStatus will indicate whether the buffer
queue is still running and whether any error conditions have been flagged
by Syncdrive.

The application can also check the CurrentBuffer variable in the
BufferQueue structure. As CurrentBuffer increments, it indicates that
previous frames have been completely transmitted or received. If the
buffer queue is running in ring mode, CurrentBuffer will wrap to zero
when a new cycle through the queue begins.

The variables within a com_block structure are updated during
queue operation as a frame is processed. After the frame is completed,
the application should check for errors in the com_block structure's
buffer_status variable just as it would in "one frame at a time" mode.

5.4.4 Oneshot mode

In oneshot mode, buffer queue operation will stop after the last
com_block structure is processed. In this mode, the application can check
for a QUEUE_DONE indication in the QueueStatus variable in the
BufferQueue structure to determine when the entire buffer queue has
been processed.

5.4.5 Ring mode

In order to maintain a running buffer queue in ring mode, the
application must refresh the com_block structures as they are processed
by Syncdrive. The application must process frame data as necessary and
set the buffer_status variable to 0 before Syncdrive will attempt to reuse
that com_block structure.

Syncdrive will not process a com_block structure whose
buffer_status variable contains a non-zero value. Instead, ring mode
operation will terminate with a QUEUE_OVERRUN indication in the
BufferStatus variable of the BufferQueue structure.

52

5.4.6 Allowing queue overruns

As an enhancement to ring mode, Syncdrive can optionally tolerate
buffer queue overruns. If QUEUE_ALLOW_OVERRUN is set in the
QueueMode variable, Syncdrive will continue processing a buffer queue
when it encounters com_block structures with non-zero buffer_status
variables. The QUEUE_OVERRUN indication in the BufferStatus variable
of the BufferQueue structure will be set, but the QUEUE_RUNNING
indicator will also remain set.

For transmit buffer queues, the data in the com_block structure will
be retransmitted, with the buffer_status variable being cleared just before
the buffer is reused. Syncdrive will set the TX_RETRANSMITTED bit in
the buffer_error variable. This status will remain set until the application
clears it. No count is kept of the number of times the com_block is
reused. For receive buffer queues, the data in the com_block
structure will be overwritten, with the buffer_status variable being
cleared just before the buffer is reused. Syncdrive will set the
RX_OVERWRITTEN bit in the buffer_error variable. This status will
remain set until the application clears it. No count is kept of the number
of times the com_block is reused.

5.5 Stopping a buffer queue

The sync_abort_message and sync_command(4) functions will stop
the transmit or receive operation, respectively, on the current com_block
structure. The action taken on the active buffer is precisely the same as in
the case of a single-frame transmission or reception being stopped.

In addition, the buffer queue will be stopped, and the
QUEUE_HALTED indicator will be set in the BufferStatus variable of the
BufferQueue structure. The application can then use the CurrentBuffer
variable in the BufferQueue structure and the buffer_status variable of the
individual com_block structures to determine the progress that had been
made up to the time the buffer queue was stopped.

53

5.6 Reusing a buffer queue

To reuse a halted or completed buffer queue, the application must
simply set the buffer_status variable of each com_block structure to 0,
load new data into the comm_buffer arrays if transmitting, and call the
sync_transmit_queue or sync_receive_queue function again.

It is not necessary to free and reregister the buffer queue unless the
application wishes to change the operating modes of the queue.

5.7 Buffer queue performance

Buffer queues perform best when DMA is used. Keeping the
overall interrupt load on the system as low as possible is encouraged.
Because of the heavier interrupt load of byte-synchronous modes, buffer
queues may not work as well as they do in bit-synchronous modes.

It can also be helpful to avoid using some of the more cumbersome
runtime library functions such as printf while a buffer queue is running.
Under DOS, runtime library functions seem to disable interrupts for long
periods of time. This behavior can disrupt queue operation.

Transmit buffer queues run very fast. Unless a large number of
buffers is used, the application may have trouble keeping up with the
speed of the queue in ring mode. The application should be prepared to
deal with the QUEUE_OVERRUN status accordingly.

54

6 OS/2 Operation

The OS/2 version of Syncdrive is very similar to the DOS version
in its feature set and general procedures for use. There are a number of
issues, however, of which the developer should be aware.

6.1 Application compilation

Applications must use the SYNCDRIVE_API calling convention,
defined in the MPA-X00.H include file, in order to access the DLL.
Structures must be packed for byte alignment. The SYNCOS2.H include
file must be included before any other Syncdrive include file. It contains
definitions needed by the other Syncdrive include files.

The "__OS2__" macro must be defined when compiling
applications. Most OS/2 compilers will automatically define this macro.
If it is not defined, the SYNCOS2.H include file will define it.

6.2 Buffer memory allocation

If and only if DMA is used to transmit or receive frames,
com_block structures MUST be allocated with the sync_alloc_dma_buffer
function.

6.3 Application termination

Syncdrive for OS/2 locks memory ranges during its operation. If
the application terminates without this memory being released, it may
block further use of the Syncdrive facilities, and may result in an
uncloseable session, necessitating a shutdown and reboot. Therefore, an
application must ensure that the sync_release function is called
before exiting for any reason. The application should call sync_release
before freeing com_block structures.

If a transmission or reception is in progress at termination, it is a
good idea to call sync_abort_message or sync_command(4) before calling
sync_release.

55

The sync_release function ensures that all locked memory is
unlocked, except for DMA buffers. If DMA buffers were allocated, the
sync_free_dma_buffers function must be called. Because applications
can terminate unexpectedly due to bugs or operator intervention,
sync_free_dma_buffers and sync_release should be called in exit handler
and signal handler functions.

6.4 Multithreaded applications

The read_timeout element of the channel configuration structure
sets the number of milliseconds that the device driver will wait for a
frame to be completely received. A thread calling sync_receive will be
blocked in the device driver if this timeout value is non-zero. The thread
will be run again when the end-of-frame condition occurs or when the
read_timeout interval expires, whichever happens first.

If the read_timeout value is zero, calls to sync_receive will return
immediately. In this mode, which allows for easy porting of DOS
Syncdrive applications to OS/2, the application needs to poll the
buffer_status variable in the com_block structure to determine when
reception of a frame has been completed. Conversely, if the read_timeout
is -1 (0xFFFFFFFF), the thread will wait forever for a frame to be received.

The write_timeout element of the channel configuration structure is
the timeout for the sync_transmit function, providing a time limit for the
completion of a frame transmission. It is independent of the
read_timeout. While a thread is blocked on transmit or receive in the
device driver, that portion of the device driver is considered busy.

Frame timeouts are indicated in the buffer_status variable in the
com_block structure. The device driver will abort the frame as if the
application had called sync_abort_message or sync_command(4). The
data is lost, and the transmitter or receiver is reset. The application
should always check the buffer_status variable in the com_block structure
when a call to sync_transmit or sync_receive returns to see if the reason
for completion was a timeout.

The sync_transmit and sync_receive functions themselves also
have a timeout parameter. If the device driver is busy with a pending
operation, the function will block on a mutex semaphore if the timeout
parameter is non-zero. If this timeout occurs before the device driver
becomes non-busy, or if the timeout parameter is zero, the function itself
will return a timeout error status. If the timeout value is -1, the function
will wait forever for access to the device driver.

56

If the read_timeout and write_timeout values in the channel
configuration structure are zero, the device driver will never appear busy
to the DLL. This means that threads will not block in the DLL either, and
the application must take responsibility for serializing access to the
hardware or risk loss of data by having threads overwriting each other's
data.

6.5 Buffer queues

At this time, Syncdrive for OS/2 does not support blocking threads
on queue operations. OS/2 applications must monitor the indicators in
the BufferQueue structure to track the queue's progress. Accordingly, the
read_timeout and write_timeout values in the channel configuration array
are ignored for queue operations.

6.6 Pointers

All pointers in Syncdrive for OS/2 are 32-bit flat pointers. 16-bit
access to the DLL is not supported. The SYNCOS2.H include file nullifies
the "near" and "far" keywords for easy porting of DOS Syncdrive
applications.

6.7 Multiple processes

While Syncdrive for OS/2 supports multithreaded applications, it
cannot at this time support multiple processes accessing the DLL.

57

58

7 Windows 3.1/95/98 Operation

The Windows 3.1 and Windows 95/98 versions of Syncdrive are
very similar to the DOS version in their feature set and general
procedures for use. There are a number of issues, however, of which the
developer should be aware.

7.1 Windows NT (a.k.a. Windows 2000)

This version of Syncdrive supports Microsoft Windows 3.1,
Windows 95, and Windows 98. It does not support Microsoft Windows
NT.

7.2 Application compilation for Windows 3.1

Applications for Windows 3.1 must be compiled for large model,
and must include the SNC31DLL.H file. Applications must use the
SYNCDRIVE_API calling convention, defined in the MPA-X00.H include
file, in order to access the Windows DLL.

Structures must be packed for byte alignment. The SNC31DLL.H
include file must be included before any other Syncdrive include file. It
contains definitions needed by the other Syncdrive include files.

The "_WINDOWS" macro must be defined when compiling
applications. Most Windows compilers will automatically define this
macro. If it is not defined, the SNC31DLL.H include file will define it.

7.3 Application compilation for Windows 95/98

Windows 95/98 applications use flat model and must include the
SNC95DLL.H file. Applications must use the SYNCDRIVE_API calling
convention, defined in the MPA-X00.H include file, in order to access
either the Windows DLL.

Structures must be packed for byte alignment. The SNC95DLL.H
include file must be included before any other Syncdrive include file. It
contains definitions needed by the other Syncdrive include files.

59

The "_WINDOWS" and "__WIN95__" (two underscores on each
side) macros must be defined when compiling applications. If they are
not defined, the SNC95DLL.H include file will define them.

7.4 Buffer memory allocation

If and only if DMA is used to transmit or receive frames, all
com_block structures MUST be allocated with the sync_alloc_dma_buffer
function.

Starting with Syncdrive release 4.00, there is no longer a need to
allocate non-DMA com_block structures with locked memory. A simple
malloc() call should suffice. Syncdrive will automatically lock memory as
needed.

7.5 Application termination

Applications should ensure that any locked memory is freed
before terminating. DMA buffers must be freed with the
sync_free_dma_buffers function. The application should call
sync_release before freeing com_block structures. It is a good idea to call
sync_abort_message or sync_command(4) before calling sync_release.

Because applications can terminate unexpectedly due to bugs or
operator intervention, termination procedures should be called in exit
handler functions.

7.6 Multithreaded applications

Windows 3.1 does not support multithreaded applications. The
read_timeout and write_timeout values in the channel configuration array
should be set to zero. Windows applications must also specify a timeout
parameter of zero on sync_transmit and sync_receive calls.

Windows 95/98 does support multithreaded applications, but
unfortunately Syncdrive does not yet accommodate them. 32-bit
Windows 95/98 applications should treat the various timeout values in
the same manner proscribed for Windows 3.1 applications.

Thread support similar to that in the OS/2 version of Syncdrive is
envisioned for a future release of the Windows 95/98 Syncdrive code.

60

7.7 Completion of frames

Applications must wait for frames to complete transmission or
reception by monitoring the buffer_status field in the com_block
structure. This operation is identical to the DOS version of Syncdrive and
the polled mode of the OS/2 version. There are currently no mechanisms
in place for callbacks or messages to an application at end-of-frame.

7.8 Buffer queues

Applications must monitor the various indicators in the
BufferQueue structure to track the queue's progress.

7.9 Pointers

All pointers in Syncdrive for Windows 3.1 are 16:16 far pointers.

All pointers in Syncdrive for Windows 95/98 are 32-bit flat
pointers. The SNC95DLL.H include file nullifies the "far" keyword for
easy porting of DOS Syncdrive applications.

7.10 Windows 3.1 applications on Windows 95/98

In order to provide for backward compatibility, Syncdrive
supports running 16-bit Windows 3.1 Syncdrive applications on Windows
95/98. In order to do this, the Windows 3.1 version of Syncdrive (release
4.00 or later) must be installed on Windows 95/98. Follow the directions
for installation of Syncdrive for Windows 3.1 given on page 2.

The Windows 3.1 version of Syncdrive will not execute 32-bit
Syncdrive applications. The Windows 3.1 version must be removed
before using the native 32-bit version of Syncdrive for Windows 95/98.
The two versions cannot coexist.

61

62

8 Syncdrive Application Programming Interface

There are a number functions that make up the application
programs entry points into Syncdrive. These Syncdrive API functions are
listed below. All Syncdrive API functions are prototyped in the
MPA-X00.H Syncdrive include file.

? config_MPA100 - configure an MPA-100 channel

? config_MPA200 - configure an MPA-200/300 channel

? config_MPA102 - configure an MPA-102 channel

? config_MPAP100 - configure an MPAP-100 channel

? sync_release - release channel configuration

? sync_transmit - transmit a frame

? sync_receive - receive a frame

? sync_register_queue - create a buffer queue structure

? sync_free_queue - destroy a buffer queue structure

? sync_transmit_queue - transmit a buffer queue of frames

? sync_receive_queue - receive a buffer queue of frames

? sync_abort_message - abort the current buffer transmission

? sync_command - execute various Syncdrive commands

? sync_alloc_dma_buffer - allocate a DMA buffer.
 (Bit synchronous modes only.)

? sync_free_dma_buffers - deallocate all DMA buffers

The following functions are obsolete and are no longer
documented, but are supported in the DLL for backward compatibility:

? sync_lmem_alloc (Windows 3.1 only)

? sync_lmem_free (Windows 3.1 only)

This pair of functions can be replaced with calls to malloc()
and free(), or equivalent operating system specific functions.

63

8.1 Calling Convention

All Syncdrive functions use a C-language interface with the
SYNCDRIVE_API call linkage macro. This macro is defined in the
MPA-X00.H include file for the various operating systems. Using it can
help make Syncdrive applications more portable from one operating
system to another.

8.2 Return Values

All Syncdrive functions return an integer value. A successful
completion is indicated by a return code of SYNC_SUCCESS (0).

If Syncdrive cannot successfully complete a function, it will return
a non-zero error code. The error codes are defined in the SYNCDRIV.H
include file and are also described on page 103.

Error codes prefixed with "FATAL" indicate difficulties that
Syncdrive has encountered which are usually beyond the application's
control. Actions encountering "FATAL" errors should usually be retried
because they may occur as a result of a temporary condition. "FATAL"
errors consistently encountered should be reported to Quatech's
Technical Support department.

8.3 Examples

Use of the Syncdrive API functions is demonstrated in the
numerous example programs supplied on the Syncdrive diskette set.
These example programs are described beginning on page 87.

64

8.4 config_MPA100 - Open a communications channel
config_MPA200
config_MPA102
config_MPAP100

short SYNCDRIVE_API config_MPA100(struct channel_cfg _far
*pMPA_Cfg); (other functions are similar)

The config_MPAxxx function is the Syncdrive channel
configuration function. The application must execute the function
corresponding to the particular MPA-series adapter being used. Most
other Syncdrive functions require the channel to already be configured.

The channel configuration structure pointed to by pMPA_Cfg
defines the hardware configuration and operating mode of the installed
communication adapter. Syncdrive uses this information to initialize the
hardware, hook interrupts, and prepare itself for data transfers.

NOTE: Use config_MPAP100() for the MPAP-200/300 and
MPAC-100 adapters.

8.4.1 pMPA_Cfg

 Pointer to the channel configuration structure defining the
configuration and operating mode of the communication channel. The
application must allocate and initialize this structure prior to calling this
function.

IMPORTANT!

Once a channel is configured, the application must not make any
changes to the channel configuration structure. If changes are

required, the channel must be released and reconfigured.

65

8.5 sync_release - Close a communications channel

short SYNCDRIVE_API sync_release(struct channel_cfg _far
*pMPA_Cfg);

The sync_release function is the reciprocal of the config_MPAxxx
function. The hardware is reset, interrupts are unhooked, and all
Syncdrive operations are disabled. The sync_release function must be
called to release a channel's configuration before a new channel
configuration can be set.

8.5.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

IMPORTANT!

The sync_release function must be executed before the
application exits. Before calling sync_release, the application
should call the sync_command(4) and/or sync_abort_message

functions to stop pending data transfers.

66

8.6 sync_transmit - Transmit a single frame of data

(DOS)
short SYNCDRIVE_API sync_transmit(struct channel_cfg _far
*pMPA_Cfg, union com_block _far
*pTxBuffer);

(OS/2 and Windows)
short SYNCDRIVE_API sync_transmit(struct channel_cfg *pMPA_Cfg,

union com_block *pTxBuffer,
unsigned long timeout);

This function starts transmission the frame of data in the
comm_buffer array element of the com_block structure. The channel must
be configured prior to calling sync_transmit.

The sync_transmit function returns immediately to the caller
(unless using the write_timeout feature under OS/2). Syncdrive
completes the transmission of the frame in the background using
interrupts and/or DMA. The application may check the status of the
transmission using the buffer_status variable in the com_block structure.

8.6.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.6.2 pTxBuffer

Pointer to a com_block structure defining the message dependent
communication parameters and containing the data block to be
transmitted.

8.6.3 timeout (OS/2 and Windows)

Unsigned long integer specifying the number of milliseconds to
wait when the device driver is busy transmitting a frame. If zero,
sync_transmit will return immediately if the driver is busy. If -1,
sync_transmit will wait forever for the driver to become non-busy. This
value should be zero for Windows, but is currently ignored.

67

8.7 sync_receive - Receive a single frame of data

(DOS)
short SYNCDRIVE_API sync_receive(struct channel_cfg _far
*pMPA_Cfg, union com_block _far
*pRxBuffer);

(OS/2 and Windows)
short SYNCDRIVE_API sync_receive(struct channel_cfg *pMPA_Cfg,

union com_block *pRxBuffer,
unsigned long timeout);

This function starts the reception of one frame of data and places
the data in the comm_buffer array element of the com_block structure.
The channel must be configured prior to calling sync_receive.

The sync_receive function returns immediately to the caller (unless
using the read_timeout feature under OS/2). Syncdrive completes the
reception of the frame in the background using interrupts and/or DMA.
The application may check the status of the reception using the
buffer_status variable provided in the com_block structure.

8.7.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.7.2 pRxBuffer

Pointer to a com_block structure defining the message dependent
communication parameters and containing the data block where received
data is to be stored.

8.7.3 timeout (OS/2 and Windows)

Unsigned long integer specifying the number of milliseconds to
wait when the device driver is busy receiving a frame. If zero,
sync_receive will return immediately if the driver is busy. If -1,
sync_receive will wait forever for the driver to become non-busy. This
value should be zero for Windows, but is currently ignored.

68

8.8 sync_abort_message - Abort current transmission

short SYNCDRIVE_API sync_abort_message(struct channel_cfg _far
*pMPA_Cfg);

This function causes an abort to be signaled on the communication
line. Transmit interrupts and DMA are disabled. If a message is being
sent when sync_abort_message is called, the com_block structure is
preserved so the application can determine what the progress had been
up to that time.

The sync_abort_message function will stop a running transmit
buffer queue. The current com_block structure will be treated normally
and the BufferStatus variable in the BufferQueue structure will have the
QUEUE_HALTED indicator set.

8.8.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

69

8.9 sync_alloc_dma_buffer - Allocate a DMA buffer

short SYNCDRIVE_API sync_alloc_dma_buffer(struct channel_cfg far
*pMPA_Cfg, unsigned short size,

union com_block far
*(*pBuffer));

The sync_alloc_dma_buffer routine is used to allocate a com_block
structure when DMA is to be used to transmit or receive data. Use of this
function guarantees that the memory buffer will not cross a DMA page
boundary. Crossing a DMA page boundary causes an error during a call
to sync_transmit or sync_receive preventing the initialization of frame
transmission or reception.

The buffers allocated by this routine must be deallocated by calling
the sync_free_dma_buffers function!

IMPORTANT!

Use this function ONLY to allocate DMA com_block buffers!
Do not use it for any other memory allocations!

8.9.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.9.2 size

An unsigned integer value defining the size of the buffer to be
allocated. The actual size of the buffer will be slightly less than this
because of buffer overhead for buffer_status and other elements of the
com_block structure.

8.9.3 pBuffer

Pointer to a com_block structure. Note that the actual parameter
passed to the function is the address of this pointer. When
sync_alloc_dma_buffer returns, pBuffer will contain a pointer to the
newly allocated com_block structure.

70

8.10 sync_free_dma_buffers - Free all DMA buffers

short SYNCDRIVE_API sync_free_dma_buffers(void);

This function deallocates all DMA buffers previously allocated
with the sync_alloc_dma_buffer function. It cannot free individual DMA
buffers.

This function has no parameters.

IMPORTANT!

The application must free all DMA buffers before exiting!

71

8.11 sync_command - Issue a miscellaneous command

short SYNCDRIVE_API sync_command(struct channel_cfg _far
*pMPA_Cfg, short command,

...);

The sync_command function provides a number of services that
allow the application to define parameters independent of the channel
configuration and to control functions of the communication hardware
that are not otherwise supported by Syncdrive. When calling the
sync_command function, the service provided is determined by the value
of the command parameter. Descriptions of each sync_command service
appear on the next several pages.

The sync_command function takes a variable number of
parameters, dependent on the particular service being requested.

8.11.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.11.2 command

An integer variable specifying the service to be executed. The
following table lists the valid command values.

modify byte sync receive mask 5
reset receiver 4
set receiver baud rate 3
set transmitter baud rate 2
set communication controller status 1
get communication controller status 0

DescriptionCommand

8.11.3 other parameters

The number and types of parameters are dependent on the service
selected. See the following pages for the specific services.

72

8.12 sync_command(0) - Get Communications Status

result = sync_command(pMPA_Cfg, 0, pChannelStatus);

The get communications controller status command allows the
application program to examine the current state of the modem control
lines, the output control lines, and the communication mode (hunt or
receive data mode).

8.12.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.12.2 pChannelStatus

Pointer to an unsigned integer variable used to return the status of
the communication controller to the application program. The format of
scc_status is shown below:

 0 0 0 0 0 0 HUNTOE1

D0D1D2D3D4D5D6D7

 0 0 0 DSRDCDCTSRTSDTR

D8D9D10D11D12D13D14D15

? DTR - indicates the current state of the DTR output.

? RTS - indicates the current state of the RTS output.

? CTS - indicates the current state of the CTS input.

? DCD - indicates the current state of the DCD input.

? DSR - indicates the current state of the DSR input.

? OE1 - indicates the current state of the communication driver
outputs. When set to 1, the transmit drivers are enabled.

73

1 OE is valid only with communication hardware featuring tri-state
output drivers.

? HUNT - when set to 1, the communication controller is in
the hunt mode. When set to 0, the controller is in the receive
data mode.

74

8.13 sync_command(1) - Set Communications Controller
State

result = sync_command(pMPA_Cfg, 1, ChannelStatus);

The set communications controller state allows the application
program to define the state of the modem control and output driver
control lines.

8.13.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.13.2 ChannelStatus

An unsigned integer variable defining the state of the modem
control lines of the channel and SCC status. The format of scc_config is
shown below:

------HUNTOE2

D0D1D2D3D4D5D6D7

 0 0 0 0 0 0 RTSDTR

D8D9D10D11D12D13D14D15

? DTR - specifies the state of the DTR output.

? RTS - specifies the state of the RTS output.

? OE2 - specifies the state of the communication driver
outputs. When set to 1, the output drivers are enabled for
transmission.

75

2 OE is only valid with communications hardware featuring tri-state
driver outputs.

8.14 sync_command(2) - Change Channel "A" Baud Rate

result = sync_command(pMPA_Cfg, 2, baud_rate, clock_rate);

This command allows the application program to change the baud
rate of the SCC's "A" channel after the channel has been configured. In
most cases, this will affect the transmit baud rate. Depending on the clock
configuration chosen (see the discussion of the clock_source variable on
page 18), it may also affect the receive baud rate.

IMPORTANT!

Do not use this function in place of setting the
tx_baud_rate and rx_baud_rate variables in the channel

configuration structure! This function is not a
replacement for normal configuration methods!

After the baud rate hardware has been reprogrammed, the actual
new baud rate is calculated and stored in the tx_baud_rate variable in the
channel configuration structure. Differences between the actual baud rate
and the requested baud rate occur when the baud rate does not divide
evenly into the clock source frequency.

8.14.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.14.2 baud_rate

An unsigned long integer variable specifying the desired baud
rate.

8.14.3 clock_rate

An unsigned long integer variable specifying the input clock
frequency to the communication controller.

76

8.15 sync_command(3) - Change Channel "B" Baud Rate

result = sync_command(pMPA_Cfg, 3, baud_rate, clock_rate);

This command allows the application program to change the baud
rate of the SCC's "B" channel after the channel has been configured.
Depending on the clock configuration chosen (see the discussion of the
clock_source variable on page 18), it may affect the receive baud rate, the
transmit baud rate, or both.

IMPORTANT!

Do not use this function in place of setting the
tx_baud_rate and rx_baud_rate variables in the channel

configuration structure! This function is not a
replacement for normal configuration methods!

After the baud rate hardware has been reprogrammed, the actual
new baud rate is calculated and stored in the rx_baud_rate variable in the
channel configuration structure. Differences between the actual baud rate
and the requested baud rate occur when the baud rate does not divide
evenly into the clock source frequency.

8.15.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.15.2 baud_rate

An unsigned long integer variable specifying the desired baud
rate.

8.15.3 clock_rate

An unsigned long integer variable specifying the input clock
frequency to the communication controller.

77

8.16 sync_command(4) - Reset Receiver

result = sync_command(pMPA_Cfg, 4);

The reset receiver command stops reception of the current message
by disabling the receiver, disabling receiver interrupts, and by masking
the DMA channel if DMA was being used. If a message is being received
when is command is executed, the com_block structure is preserved so
the application can determine what the progress had been up to that time.

This command will stop a running receive buffer queue. The
current com_block structure will be treated normally and the BufferStatus
variable in the BufferQueue structure will have the QUEUE_HALTED
indicator set.

8.16.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

78

8.17 sync_command(5) - Change Byte Sync Receive Mask

result = sync_command(pMPA_Cfg, 5, rx_char, rx_type);

This sync_command service allows the application program to
define the special receive characters for Syncdrive's byte synchronous
message mode. The frame's sync, SDI, EDI, and pad characters must all
be defined using service 5.

8.17.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.17.2 rx_char

An unsigned character variable specifying the character to be
defined in the receive mask.

8.17.3 rx_type

An unsigned character variable specifying the type of character
rx_char represents:

Sync Character 4
Pad Character 3
End of Data Indicator (EDI) 2
Start of Data Indicator (SDI) 1
Data Character (reset to standard character) 0

MeaningValue

An rx_type of 0 is used to remove the interpretation a special
received character and start receiving it as a data character. For example,
to change the SDI character from an 0x02 to an 0x08, rx_type of 0 would be
assigned to the 0x02 character to stop its interpretation as the SDI
character. The 0x08 character would then be assigned a type of 1, for SDI.
Without removing the SDI interpretation of the 0x02, Syncdrive would
interpret both characters as the SDI character.

79

8.18 sync_register_queue - Create and register a buffer
queue

short SYNCDRIVE_API sync_register_queue(struct channel_cfg _far
*pMPA_Cfg, unsigned long NumBuffers,

union com_block _far
*BufferArray[], unsigned long threshold,

unsigned long mode,
struct BufferQueue _far *

(*pQueue));

This function is used to create a queue of com_block buffers that
can be used with the sync_transmit_queue or sync_receive_queue
functions. Syncdrive allocates memory for the queue structure and
initializes it for use, returning a pointer to the queue structure to the
application.

A communications channel may use only one transmit queue and
one receive queue at a time. Attempts to register subsequent queues are
rejected. A queue is considered registered until it is deregistered with the
sync_free_queue function.

The application must allocate all of the com_block structures to be
used as part of the buffer queue before registering the queue. If the
channel will be run using DMA, the buffers should be allocated using the
sync_alloc_dma_buffer function.

8.18.1 pMPA_Cfg

Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.18.2 NumBuffers

An unsigned long integer specifying the number of com_block
pointers in BufferArray[].

8.18.3 BufferArray[]

An array of pointers to com_block structures. The application
must allocate com_block structures and create this array filled with
pointers to those structures.

8.18.4 threshold

A reserved unsigned long integer. Set to 0.

80

8.18.5 mode

Bitmapped values that controls how the buffer queue will operate.
The application must select one value from each of the following
groupings and OR them together:

QUEUE_TRANSMIT for use with sync_transmit_queue.
QUEUE_RECEIVE for use with sync_receive_queue.

QUEUE_ONESHOT process buffers once, then stop.
QUEUE_RING process buffers in a continuous ring.

Additional "a la carte" option:

QUEUE_ALLOW_OVERRUN recycle com_blocks in ring mode.

8.18.6 pQueue

Pointer to a BufferQueue structure. Note that the actual
parameter passed to the function is the address of this pointer.
When sync_register_queue returns, pQueue will contain a pointer to the
newly registered BufferQueue structure.

81

8.19 sync_free_queue - Deregister a buffer queue

short SYNCDRIVE_API sync_free_queue(struct channel_cfg _far
*pMPA_Cfg, struct BufferQueue _far
*pQueue);

This function is used to deregister a queue of com_block buffers.
Communications activity for the queue should be stopped by calling the
sync_abort_transmit or sync_command(4) function before freeing the
queue.

The application must free all buffer queues before terminating. It
is best to free the queues before closing the communications channel with
the sync_release function. As a precaution, however, sync_release will
free any registered buffer queues. If sync_free_queue is called after
sync_release is called, a QUEUE_NOT_REGISTERED error code is
returned.

The application must not reference the freed queue because
Syncdrive deallocates the memory for the queue structure. The
individual com_block buffers that make up the queue are not affected,
and the application may continue to access them after calling this
function.

The application is responsible for deallocating all of the com_block
structures used as part of the buffer queue. If the channel was run using
DMA, the buffers should be deallocated using the sync_free_dma_buffers
function.

8.19.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.19.2 pQueue

Pointer to the BufferQueue structure to be freed.

82

8.20 sync_transmit_queue - Start a transmit buffer queue

(DOS)
short SYNCDRIVE_API sync_transmit_queue(struct channel_cfg _far
*pMPA_Cfg, struct BufferQueue _far
*pQueue);

(OS/2 and Windows)
short SYNCDRIVE_API sync_transmit_queue(struct channel_cfg
*pMPA_Cfg, struct BufferQueue
*pQueue, unsigned long timeout);

This function initiates the transmission of the data frame in the first
com_block structure in a buffer queue. The buffer queue must have been
previously registered using the sync_register_queue function, and must
have had the QUEUE_TRANSMIT mode indicated when registered.

After the first buffer has been transmitted, Syncdrive will continue
transmitting the queue's other buffers in the background. When the last
buffer in the queue has been transmitted, Syncdrive will stop if the
QUEUE_ONESHOT mode was chosen when the queue was registered.

If the QUEUE_RING mode was chosen, Syncdrive will attempt to
process the queue again, starting with the first buffer. In order for a buffer
to be processed again, the buffer_status byte of the com_block structure
must have been reset to zero by the application. If the buffer_status byte
is non-zero, a QUEUE_OVERRUN status is generated and the queue
operation is stopped.

The application may check the progress of the queue by using the
QueueStatus and CurrentBuffer elements of the BufferQueue structure.
The application may also check the status of an individual buffer using
the buffer_status variable provided in the com_block structure.

8.20.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.20.2 pQueue

Pointer to the BufferQueue structure.

8.20.3 timeout (OS/2 and Windows)

A reserved unsigned long integer. Set to 0.

83

8.21 sync_receive_queue - Start a receive buffer queue

(DOS)
short SYNCDRIVE_API sync_receive_queue(struct channel_cfg _far
*pMPA_Cfg, struct BufferQueue _far
*pQueue);

(OS/2 and Windows)
short SYNCDRIVE_API sync_receive_queue(struct channel_cfg
*pMPA_Cfg, struct BufferQueue
*pQueue, unsigned long timeout);

This function initiates the reception of a data frame and place the
received data in the first com_block structure in a buffer queue. The
buffer queue must have been previously registered using the
sync_register_queue function, and must have had the QUEUE_RECEIVE
mode indicated when registered.

After the first buffer has been received, Syncdrive will continue
filling other buffers in the queue. When the last buffer in the queue has
been filled, Syncdrive will stop if the QUEUE_ONESHOT mode was
chosen when the queue was registered.

If the QUEUE_RING mode was chosen, Syncdrive will attempt to
process the queue again, starting with the first buffer. In order for a buffer
to be processed again, the buffer_status byte of the com_block structure
must have been reset to zero by the application. If the buffer_status byte
is non-zero, a QUEUE_OVERRUN status is generated and the queue
operation is stopped.

The application may check the progress of the queue by using the
QueueStatus and CurrentBuffer elements of the BufferQueue structure.
The application may also check the status of an individual buffer using
the buffer_status variable provided in the com_block structure.

8.21.1 pMPA_Cfg

 Pointer to the channel configuration structure of the
communication channel. This must be the same structure that was
provided to the config_MPAxxx function.

8.21.2 pQueue

Pointer to the BufferQueue structure.

8.21.3 timeout (OS/2 and Windows)

A reserved unsigned long integer. Set to 0.

84

85

9 Building Syncdrive Applications

Each of the platforms that Syncdrive supports has slightly different
methods of linking the Syncdrive functions to an application.

? DOS

Choose the appropriate Syncdrive library from the
distribution disks. Link the Syncdrive library with the
application's object modules. Only large model is
supported.

The library files can be found in the \DOS directory of disk
1 of the Syncdrive diskette set:

TSYNCDRL.LIB Borland C large model library
SYNCDRVL.LIB Microsoft C large model library

? Windows 3.1

Compile for large memory model.

Link the application's object modules with the Windows 3.1
Syncdrive API import library file SYNC_31.LIB. This file can
be found in the \WIN31 directory of disk 1 of the Syncdrive
diskette set.

Ensure that the Windows 3.1 device driver (VxD) and DLL
have been installed properly on the system where the
application is to be executed.

? Windows 95/98

Link the application's object modules with the appropriate
Windows 95/98 Syncdrive API import library file. The file
can be found in the \WIN95 directory of disk 1 of the
Syncdrive diskette set.

SYNCDRIV.LIB Import library for Borland C++ 5.0

SYNCMSVC.LIB Import library for Visual C++ 5.0/6.0

Ensure that the Windows 95 device driver (VxD) and DLL
have been installed properly on the system where the
application is to be executed.

86

? OS/2

Link the application's object modules with the OS/2
Syncdrive API import library file SYNCDRIV.LIB. This file
can be found in the \OS2 directory of disk 1 of the Syncdrive
diskette set.

Ensure that the OS/2 device driver and DLL have been
installed properly on the system where the application is to
be executed.

All required Syncdrive include files can be found in the
\INCLUDE directory of disk 1 of the Syncdrive diskette set.

9.1 Tips and Techniques

Syncdrive data structures must be byte-aligned. They cannot be
packed on word or dword boundaries.

The DOS and Windows 3.1 versions of Syncdrive support only
large model applications.

When linking, the /NOF option is required. This prevents the
optimizing of far calls to near calls for routines that end up in the same
code segment.

Use the MPA-200 configuration information and routines for the
MPA-300 adapter.

87

10 Include File Structure

mpa-x00.h - Defines the channel configuration structure and provides
function prototypes for Syncdrive API functions.

syncdriv.h - Defines the com_block and BufferQueue structures, data
types, global limits, status codes and error codes.

syncos2.h - Defines several items needed to generate Syncdrive
applications for OS/2. Within a source code module, this file must be
included before any other Syncdrive include files.

snc31dll.h - Defines several items needed to generate Syncdrive
applications for Windows 3.1. Within a source code module, this file
must be included before any other Syncdrive include files.

snc95dll.h - Defines several items needed to generate Syncdrive
applications for Windows 95/98. Within a source code module, this file
must be included before any other Syncdrive include files.

88

89

11 Example Programs

Numerous small example programs are supplied with Syncdrive.
These examples cover the various operating modes of the product.
Source code and executable files are provided for each example program.
A small selection of makefiles is also provided.

11.1 Source code

The source code for all examples can be found in the \EXAMPLES
directory on disk 1 of the Syncdrive diskette set. The examples are text
mode programs under DOS, Windows 95/98 and OS/2, and are
"QuickWin" text mode programs under Windows 3.1.

11.2 Executable files

The executable programs can be found in the following directories
of the Syncdrive diskette set:

? DOS \EXAMPLES\DOS\EXE (disk 2)

? Windows 3.1 \EXAMPLES\WIN31\EXE (disk 2)

? Windows 95/98 \EXAMPLES\WIN95\EXE (disk 3)

? OS/2 \EXAMPLES\OS2\EXE (disk 3)

11.3 Building the example programs

The Syncdrive example programs have been tested with popular
compilers on each supported operating system, but we do not have
customer-ready makefiles for all of them. For the makefiles that are
supplied, it may be necessary to modify compiler and linker options,
drive letters, paths to tools, include files, libraries, etc.

90

Because the same set of example programs are designed to be used
with all MPA-series adapters and all operating systems supported by
Syncdrive, it is necessary to define macros when compiling them:

MPA102 Compile for MPA-102 adapter
MPA200 Compile for all other adapters
__OS2__ Compile for OS/2
_WINDOWS Compile for Windows 3.1/95/98
__WIN95__ Compile for Windows 95/98

11.3.1 DOS

Makefiles are supplied for the Borland C++ compiler (version 3.1)
and the Microsoft C compiler (version 6.0). There are also batch files
which take a parameter (MPA200 or MPA102) indicating the adapter type
and run the appropriate makefile for each application. The files are found
on disk 2 of the Syncdrive diskette set in the \EXAMPLES\DOS
directory:

DOSAPPSB.BAT Build all apps with Borland C++ 3.1
BCAPP.MAK Borland C++ makefile
DOSAPPSM.BAT Build all apps with Microsoft C 6.0
APP.MAK Microsoft C makefile

11.3.2 OS/2

A makefile is supplied for the IBM VisualAge C++ (version 3.0)
compiler. To use this makefile, run NMAKE from an OS/2 command
prompt. The makefile takes a parameter (MPA200 or MPA102) indicating
the adapter type. The makefile is located on disk 3 of the Syncdrive
diskette set:

All adapters \EXAMPLES\OS2\OS2APPS.MAK

11.3.3 Windows 3.1

A project file is supplied for the Borland C++ (version 4.5) 16-bit
Windows compiler. The project file is located on disk 2 of the Syncdrive
diskette set:

MPA-102 \EXAMPLES\WIN31\16APP102.IDE
All others \EXAMPLES\WIN31\16APP200.IDE

91

11.3.4 Windows 95/98

A project file is supplied for the Borland C++ (version 5.02) 32-bit
Windows compiler. The project file is located on disk 3 of the Syncdrive
diskette set:

MPA-102 \EXAMPLES\WIN31\32APP102.IDE
All others \EXAMPLES\WIN31\32APP200.IDE

11.4 Descriptions of example programs

11.4.1 LPBCKBI, LPBCKBY

This is a loopback program, running in bit-synchronous (LPBCKBI)
or byte-synchronous (LPBCKBY) mode. Only one MPA-series adapter is
needed. No connector or cable is necessary. Configuration options can be
selected on the command line.

11.4.2 FDBCKBI, FDBCKBY

This is a "feedback" program, running in bit-synchronous
(FDBCKBI) or byte_synchronous (FDBCKBY) mode. Two MPA-series
adapters must be installed in the same system in order to run this
program. One adapter must be configured for DTE, and the other for
DCE. A one-to-one cable is connected between the two adapters. If an
MPA-102 is being used, only one adapter is needed. The addresses and
IRQs used are hard-coded (see the source code).

11.4.3 SENDBI

This program transmits single frames. It runs in bit-synchronous
mode. It can be used in tandem with RECBI running on another computer
with the two MPA-series adapters (one a DTE, the other a DCE) connected
by a one-to-one cable. Configuration options can be selected on the
command line.

11.4.4 RECBI

This program receives single frames. It runs in bit-synchronous
mode. It can be used in tandem with SENDBI running on another
computer with the two MPA-series adapters (one a DTE, the other a DCE)

92

connected by a one-to-one cable. Configuration options can be selected
on the command line.

11.4.5 SENDBY

This program transmits single frames. It runs in byte-synchronous
mode. It can be used in tandem with RECBY running on another
computer with the two MPA-series adapters (one a DTE, the other a DCE)
connected by a one-to-one cable. Configuration options can be selected
on the command line.

11.4.6 RECBY

This program receives single frames. It runs in byte-synchronous
mode. It can be used in tandem with SENDBY running on another
computer with the two MPA-series adapters (one a DTE, the other a DCE)
connected by a one-to-one cable. Configuration options can be selected
on the command line.

11.4.7 QSENDBI

This program demonstrates the use of buffer queues for
transmitting. It runs in bit-synchronous mode. By default, ring mode is
used for the queue. This program can be used in tandem with QRECBI
running on another computer with the two MPA-series adapters (one a
DTE, the other a DCE) connected by a one-to-one cable. QSENDBI sends
frames too quickly for the RECBI program to be used on the other end.
Configuration options can be selected on the command line.

11.4.8 QRECBI

This program demonstrates the use of buffer queues for receiving.
It runs in bit-synchronous mode. By default, ring mode is used for the
queue. This program can be used in tandem with QSENDBI or SENDBI
running on another computer with the two MPA-series adapters (one a
DTE, the other a DCE) connected by a one-to-one cable. Configuration
options can be selected on the command line.

93

11.4.9 THREADRX

This OS/2 program demonstrates Syncdrive's support for
multithreaded programs. It spawns a number of threads which take turns
setting up bit-synchronous single-frame receive operations. By default,
timeouts are enabled. THREADRX can be used in tandem with
THREADTX running on another computer with the two MPA-series
adapters (one a DTE, the other a DCE) connected by a one-to-one cable.
Configuration options can be selected on the command line.

11.4.10THREADTX

This OS/2 program demonstrates Syncdrive's support for
multithreaded programs. It spawns a number of threads which take turns
setting up bit-synchronous single-frame transmit operations. By default,
timeouts will be generated. THREADTX can be used in tandem with
THREADRX running on another computer with the two MPA-series
adapters (one a DTE, the other a DCE) connected by a one-to-one cable.
Configuration options can be selected on the command line.

94

95

12 Definitions

DMA (Direct Memory Access) - A method by which the computer
hardware can transfer I/O information directly between the port and
memory. It is useful because it reduces software overhead thus
increasing system throughput. DMA is available to Syncdrive when
operating with bit synchronous protocol.

SCC (Serial Communications Controller) - The integrated circuit that
handles the bulk of the hardware functions for the serial channel.
Typically, the SCC will either be an AM85C30-10 or Z85230-10 on Quatech
MPA-series adapters.

96

97

13 MPA-Series Adapter Clocking Options

The various MPA-series adapters have slightly different options
for routing clock signals to and from the connector. Single-channel
MPA-series adapters use a portion of the "B" channel of the SCC to
support extra clocking options.

Listed below is a description of the options available for each type
of MPA-series adapter supported by Syncdrive. The clock configuration
is determined by the clock_source variable in the channel configuration
structure. Please refer to the connector descriptions in the Hardware
Guide for the MPA-series adapter for details on the connector pinouts and
signal names.

13.1 MPA-100 DTE

To receive the transmit clock on TXCLK(DCE), set clock_source bit
D2 to 0 and select the TRxC source. To self-source the transmit clock, set
clock_source bit D2 to 1 and select either the BRG or DPLL source. The
transmit clock is always output on TXCLK(DTE).

To receive the receive clock on RXCLK(DCE), set clock_source bit
D5 to 0 and select the RTxC source. To self-source the receive clock, set
clock_source bit D5 to 1 and select either the BRG or DPLL source. The
DTE cannot transmit its receive clock.

13.2 MPA-100 DCE

The transmit clock is always self-sourced. Select either the BRG or
DPLL source. Set clock_source bit D2 to 1 to output the transmit clock on
RXCLK(DCE). Setting clock_source bit D2 to 0 has no effect. The DCE
cannot receive its transmit clock.

To receive the receive clock on RXCLK(DTE), set clock_source bit
D5 to 0 and select the RTxC source. To self-source the receive clock, set
clock_source bit D5 to 1 and select either the BRG or DPLL source. The
receive clock is always output on TXCLK(DCE).

98

13.3 MPA-200/300 DTE, MPA-2000/3000 DTE

To receive the transmit clock on RTCLK, set clock_source bit D2 to
0 and select the TRxC source. To self-source the transmit clock and
output the transmit clock on TTCLK, set clock_source bit D2 to 1 and
select either the BRG or DPLL source.

To receive the receive clock on RRCLK, set clock_source bit D5 to 0
and select the RTxC source. To self-source the receive clock, set
clock_source bit D5 to 1 and select either the BRG or DPLL source. The
DTE cannot transmit its receive clock.

13.4 MPA-200/300 DCE, MPA-2000/3000 DCE

The transmit clock is always self-sourced. Select either the BRG or
DPLL source. To output the transmit clock on RRCLK, set clock_source
bit D2 to 1. Setting clock_source bit D2 to 0 has no effect, as the DCE
cannot receive its transmit clock.

To receive the receive clock on TTCLK, set clock_source bit D5 to 0
and select the RTxC source. To self-source the receive clock and output it
on RTCLK, set clock_source bit D5 to 1 and select either the BRG or DPLL
source.

13.5 MPA-102 DTE

To receive the transmit clock on TXCLK(DCE), set clock_source bit
D2 to 0 and select the TRxC source. To self-source the transmit clock, set
clock_source bit D2 to 1 and select either the BRG or DPLL source. The
transmit clock is always output on TXCLK(DTE).

The receive clock is always received on TXCLK(DCE). The
clock_source bit D5 has no effect. Choose the RTxC source. The DTE
cannot transmit its receive clock.

99

13.6 MPA-102 DCE

The transmit clock is always output on both TXCLK(DCE) and
RXCLK(DCE). The clock_source bit D2 should be set to 1. Choose either
the BRG or DPLL source. The DCE cannot receive its transmit clock.

The receive clock is always received on TXCLK(DTE). The
clock_source bit D5 has no effect. Choose the RTxC source.

13.7 MPAP-100 (only available as a DTE)

Refer to MPA-100 DTE. The receive clock is always output on
RXCLK(DTE).

13.8 MPAP-200/300 (only available as a DTE)

Refer to MPA-200/300 DTE.

100

101

14 Troubleshooting

14.1 Verify that the hardware is configured properly

A good first step in solving problems is establishing that there are
no hardware conflicts. One way to do this is to try known-good Syncdrive
applications on the hardware. The compiled Syncdrive example
programs are good tools to use for this purpose. All of the compiled
programs have been verified to run in a known-good system before they
are shipped.

The best place to start is with the LPBCKBI.EXE program. This
program requires no cables to be connected. By default, LPBCKBI will
run using base address 0x300, IRQ5, DMA3 for transmit and DMA1 for
receive. It can accept as command line input whatever resource settings
are being used on the installed MPA-series adapter. Run the program
with a /? parameter on the command line for a short help screen.

LPBCKBI will run continuous frames in loopback mode. As it
runs, it prints each frame to the screen. If LPBCKBI is able to run
successfully, then it verifies that the hardware configuration is good. If
LPBCKBI crashes or locks up, it indicates that the hardware is not
configured properly. It may be necessary to change some of the hardware
settings to avoid conflicts with other devices in the system.

14.2 Syncdrive is not PCMCIA-aware

Syncdrive currently is not plug-and-play capable. When using
Syncdrive with PCMCIA cards, it is necessary to obtain the base address
and IRQ assigned to the card by the PCMCIA Card Services and provide
those values in the channel configuration array.

For DOS, Windows 3.1 and OS/2, the client driver supplied with
the card should be used to configure the card at the desired base address
and IRQ. Use these settings with the Syncdrive application.

Under Windows 95/98, the card is automatically configured. To
find the settings, click the right mouse button on the My Computer icon
and select Properties. Select the Device Manager tab and double-click the
card's entry under the "Synchronous Communication" section. Select the
Resources tab to see the card's base address and IRQ. Use these settings

102

with the Syncdrive application. Windows 95/98 may allow changes to
the settings if the "Use Automatic Settings" box is unchecked.

14.3 Check the Syncdrive configuration

If the hardware is verified to be good, then the problem must be
somewhere in the software. The first place to check is the channel
configuration structure. Double check that all variables in this structure
are set properly. If lockups or crashes are a problem, particularly check
the hardware settings such as base_address, tx_interrupt, rx_interrupt,
tx_dma_channel, and rx_dma_channel.

14.4 Check the clock sourcing

If transmit or receive operations just don't seem to work right,
double check the clock_source variable in the channel configuration
structure. In conjunction with the hardware manual for the MPA-series
adapter, make sure that any clock signals on the cable are being routed to
the proper SCC inputs and outputs, and that the modes in clock_source
are set properly.

14.5 Know the speed limits

There are limits on how fast the MPA-series adapters can operate.
Most of the limitations are the result of the ISA bus itself. When using
DMA, the top data rate is usually around 1.2 Mbps. When not using
DMA, the top data rate is usually around 130-150 kbps. Using an optional
Zilog Z85230 SCC with its FIFOs enabled can help increase the achievable
data rate when not using DMA.

103

14.6 Know the possible data rates

Each MPA-series adapter's hardware manual contains an equation
used in programming the SCC's baud rate generator. If you are having
trouble getting a particular data rate to work, check it with this equation
to make sure that the Baud_Const divisor is an integer value. If it is not
an integer value, Syncdrive will round the data rate to the nearest rate that
will produce an integer divisor.

In the baud rate divisor equation, Clock_Frequency and
"Clock_Mode" are the respective values from the clock_rate and
clock_source (bits D7 and D6) variables in the channel configuration
structure. Notice that the equation shows that as baud rate increases, the
steps between baud rate selections get larger. Also note that the
maximum available baud rate on the SCC is 1/4 of the input clock
frequency. Unfortunately, because the ISA bus cannot provide service to
the adapter quickly enough, rates this high cannot actually be achieved.

If you need a baud rate that cannot be achieved with the standard
clock frequency, contact Quatech Technical Support. It may be possible to
use a custom clock oscillator to change the available baud rate selections.

104

105

15 Error Codes

The definitive source for error codes is the SYNCDRIV.H include
file. The error codes for Release 4.00 are duplicated here for convenience.

0x0000 Function successfully completed
0x0xxx User error (see below)
0x1xxx Internal Syncdrive error (report to Quatech)

#define SYNC_SUCCESS 0x0000 // Function complete
#define BAD_CFG_POINTER 0x0001 // Invalid channel_cfg pointer
#define BAD_SIGNATURE 0x0002 // Invalid signature (channel_cfg)
#define BAD_BOARD_ID 0x0003 // Invalid board type (channel_cfg)
#define NO_BISYNC_MASK 0x0004 // Not running BISYNC mode
#define CHANNEL_ALREADY_CONFIGURED 0x0005 // Invalid repeat config_mpaxxxx call
#define BAD_MASK_TYPE 0x0006 // Rx char type out of range
#define CANNOT_SET_STATUS 0x0007
#define CANNOT_SET_BAUD 0x0008
#define CANNOT_RESET_RX 0x0009
#define BAD_QUEUE_MODE 0x000A // Invalid BufferQueue.QueueMode
#define CANNOT_ALLOCATE_DMA_BUFFER 0x000B
#define CANNOT_FREE_DMA_BUFFERS 0x000C
#define TOO_MANY_DMA_BUFFERS 0x000D // DMA buffer count limit exceeded
#define BOARD_NUMBER_OUT_OF_RANGE 0x000F // Invalid board_number (channel_cfg)
#define BAD_DMA_CHANNEL_NUMBER 0x0010 // DMA 1, 2, or 3 are valid
#define TOO_MANY_COMBLOCKS 0x0011 // See GLOBAL_MAXCOMBLOCKS
#define CANNOT_ABORT_TX 0x0012
#define QUEUE_ALREADY_REGISTERED 0x0013 // Free the registered queue first
#define QUEUE_NOT_REGISTERED 0x0014 // Register a queue first
#define QUEUE_ALREADY_RUNNING 0x0015 // Abort the Rx or Tx operation first
#define CHANNEL_NOT_OPEN 0x0016 // Call config_mpaXXXX first
#define COMBLOCK_TOO_LARGE 0x0017 // Exceeds 64kB, including overhead
#define NULL_BUFFER_LENGTH 0x0018 // Comblock buffer_length was 0.
#define VERSION_MISMATCH 0x0019 // DLL, driver versions don't match
#define BAD_IRQ_NUMBER 0x0020 // Invalid IRQ or IRQ in use
#define INVALID_COMMAND 0x0030 // Command number out of range
#define BAD_BAUD_RATE 0x0031 // Maximum = (0.25)(clock rate)
#define QUEUE_DMA_SETUP_ERROR 0x0032 // BufferArray[] contains non-DMA
buffer.
#define DMA_SETUP_ERROR 0x0033 // Use sync_alloc_dma_buffer with
DMA.
#define DRIVER_BUSY 0x0082 // Still processing an earlier frame

#define FATAL_CANNOT_GET_SEMAPHORE 0x1001
#define FATAL_CANNOT_RELEASE_SEMAPHORE 0x1002
#define FATAL_CANNOT_CREATE_SEMAPHORE 0x1003
#define FATAL_CANNOT_DESTROY_SEMAPHORE 0x1004
#define FATAL_CANNOT_OPEN_CHANNEL 0x1005
#define FATAL_CANNOT_CLOSE_CHANNEL 0x1006
#define FATAL_CANNOT_SET_SYSINFO 0x1007
#define FATAL_CANNOT_MALLOC_OBJECT 0x1008
#define FATAL_CANNOT_MALLOC_MASK 0x1009
#define FATAL_CANNOT_MALLOC_QUEUE 0x100A
#define FATAL_CANNOT_STORE_CONFIG_ARRAY 0x100B
#define FATAL_CANNOT_LOCK_MEMORY 0x100C
#define FATAL_GDT_MAPPING_FAILED 0x100D
#define FATAL_CANNOT_UNLOCK_MEMORY 0x100E

106

#define FATAL_CANNOT_GET_GLOBAL_MAP 0x100F
#define FATAL_CANNOT_FREE_GLOBAL_MAP 0x1010
#define FATAL_CANNOT_FIND_DRIVER 0x1011

107

Syncdrive
Synchronous Communications Software
User's Manual
June 2001
940-0057-760

108

