

# **TECHNICAL** NOTE

## **BANK INTERLEAVING WITH EXTENDED DATA-OUT VRAMS**

#### INTRODUCTION

The extended data-out (EDO) functionality introduced on 2 Meg VRAMs provides faster PAGE-MODE cycle times  $by allowing \, data \, to \, remain \, or \, appear \, on \, the \, outputs \, beyond \,$ the deactivation of the related CAS signal (please refer to Technical Note TN-04-21, Reduce DRAM Cycle Times with Extended Data-Out). The tradeoff for this improved performance is that  $\overline{CAS}$  alone can no longer be used to disable the data outputs. In situations where this behavior is required, such as bank-interleaved systems, the OE signal must be used to disable the data outputs.

#### BANK INTERLEAVED SYSTEMS

In bank-interleaved systems, the data outputs of nonselected banks must be disabled while data is being read from the selected bank. When using non-EDO parts, this can be achieved by deactivating the CAS signals of the nonselected banks. However EDO parts require that  $\overline{OE}$  signals be used. For example, an interleaved design using two banks of MT42C8256 2 Meg VRAMs requires an  $\overline{OE}$  signal for each bank. This configuration and related general timing are shown in Figure 1.



Figure 1 (a) TWO BANKS, WITH SEPARATE OEs (b) RELATED GENERAL READ TIMING

MICRON





Figure 2 (a) TWO BANKS, WITH A COMMON OF (b) RELATED GENERAL READ TIMING

For some designs, providing an  $\overline{OE}$  signal for each bank may be considered undesired overhead. For this reason, the EDO operation of the Micron MT42C256K16A1 4 Meg VRAM was modified to allow bank interleaving with a single  $\overline{\mbox{OE}}$  line common to all banks. System timing for common OE operation is shown in Figure 2. Note that edge  $\odot$  of  $\overline{OE}$  causes the devices in bank 2 to drive the bus, but the outputs of the devices in bank 1 remain disabled. This reflects the modified EDO functionality provided by the MT42C256K16A1; this operation is shown in more detail in Figure 3. Initial EDO devices cannot be used as shown in Figure 2 because both banks would drive data as a result of  $\overline{\text{OE}}$  edge ③. The data from bank 1 that was disabled at edge ② would simply be re-enabled at edge ③.

The "latched output-disable" functionality of modified EDO parts, such as the MT42C256K16A1, takes into account that  $\overline{\text{CAS1}}$  is HIGH when  $\overline{\text{OE}}$  goes HIGH at edge @. When this occurs, the data outputs of bank 1 are disabled, and will remain disabled until CAS1 goes LOW again.



Figure 3
FAST-PAGE-MODE EDO READ CYCLE SHOWING ORIGINAL AND
MODIFIED OPERATION

### **SUMMARY**

When interleaving banks of EDO VRAMs, it is necessary to use  $\overline{\text{OE}}$  signals to select the appropriate bank to drive the bus, and to deselect the other banks. The original parts that include EDO functionality require a separate  $\overline{\text{OE}}$  signal for each bank. The MT42C256K16A1 4 Meg VRAM provides

modified  $\overline{\text{EDO}}$  operation which allows for the use of a common  $\overline{\text{OE}}$  signal for all banks. The MT42C256K16A1 functions identically to previous EDO devices in all other cases.