16K x 16 Bit Asynchronous/Latched Address Fast Static RAM

The MCM62995A is a 262,144 bit latched address static random access memory organized as 16,384 words of 16 bits, fabricated using Motorola's high-performance silicon-gate CMOS technology. The device integrates a $16 \mathrm{~K} \times 16$ SRAM core with advanced peripheral circuitry consisting of address and data input latches, active high and active low chip enables, separate upper and lower byte write strobes, and a fast output enable. This device has increased output drive capability supported by multiple power pins. In addition, the output levels can be either 3.3 V or 5 V TTL compatible by choice of the appropriate output bus power supply.
Address, data in, and chip enable latches are provided. When latch enable (LE for address and chip enables and DL for data in) is high, the address, data in, and chip enable latches are in the transparent state. If latch enable (LE, DL) is tied high, the device can be used as an asynchronous SRAM. When latch enable (LE, DL) is low, the address, data in and chip enable latches are in the latched state. This input latch simplifies read and write cycles by guaranteeing address and data-in hold time in a simple fashion.

Dual write strobes ($\overline{\mathrm{BWL}}$ and $\overline{\mathrm{BWH}}$) are provided to allow individually writeable bytes. $\overline{B W L}$ controls DQ0 - DQ7 (the lower bits), while $\overline{B W H}$ controls DQ8 - DQ15 (the upper bits).
Additional power supply pins have been utilized and placed on the package for maximum performance. In addition, the output buffer power pins are electrically isolated from the other two and supply power only to the output buffers. This allows connecting the output buffers to 3.3 V instead of 5.0 V if desired. If 3.3 V output levels are chosen, the output buffer impedance in the "high" state is approximately equal to the impedance in the "low" state thereby allowing simplified transmission line terminations.

The MCM62995A is available in a 52 pin plastic leaded chip carrier (PLCC).
This device is ideally suited for systems which require wide data bus widths, cache memory and tag RAMs. See Figure 2 for applications information.

- Single $5 \mathrm{~V} \pm 10 \%$ Power Supply
- Choice of 5 V or $3.3 \mathrm{~V} \pm 10 \%$ Power Supplies for Output Buffers
- Fast Access Times: 12/15/20/25 ns Max
- Byte Writeable via Dual Write Strobes with Abort Write Capability
- Separate Data Input Latch for Simplified Write Cycles
- Address and Chip Enable Input Latches
- Common Data Inputs and Data Outputs
- Output Enable Controlled Three-State Outputs
- High Output Drive Capability: $85 \mathrm{pF} /$ Output at Rated Access Time
- High Board Density 52 Lead PLCC Package

MCM62995A

PIN NAMES	
A0-A13	. Address Inputs
 Latch Enable
DL	Data Latch Enable
W Write Enable
BWL	... Byte Write Strobe Low
BWH Byte Write Strobe High
E.........	. . . Active High Chip Enable
E........ Active Low Chip Enable
$\overline{\mathrm{G}}$ Output Enable
DQ0 - DQ15 Data Input/Output
$V_{\text {cc }} \ldots . .$.	$\ldots \ldots . .$.
$V_{\text {CCO }} \ldots . .$.	. Output Buffer Power Supply
VSSQ Output Buffer Ground
VSS Ground
NC No Connect

All power supply and ground pins must be connected for proper operation of the device. $\mathrm{V}_{\mathrm{CC}} \geq \mathrm{V}_{\mathrm{CCQ}}$ at all times including power up.

BLOCK DIAGRAM

TRUTH TABLE

Es	\bar{W}	$\overline{B W L}$	$\overline{B W H}$	LE	DL	\bar{G}	Mode	Supply Current	I/O Status
F	X	X	X	X	X	X	Deselected Cycle	ISB	High-Z
T	H	X	X	H	X	H	Read Cycle	ICC	High-Z
T	H	X	X	H	X	L	Read Cycle	ICC	Data Out
T	H	X	X	L	X	L	Latched Read Cycle	ICC	Data Out
T	L	L	L	H	H	X	Write Cycle All Bits	ICC	High-Z
T	L	H	H	X	X	X	Aborted Write Cycle	ICC	High-Z
T	L	L	H	H	H	X	Write Cycle Lower 8 Bits	ICC	High-Z
T	L	H	L	H	L	X	Write Cycle Upper 8 Bits Latched Data-In	ICC	High-Z
T	L	L	L	L	L	X	Latched Write Cycle Latched Data-In	ICC	High-Z

NOTE: True (T) is $E=1$ and $\bar{E}=0$. E, \bar{E}, and Addresses satisfy the specified setup and hold times for the falling edge of LE. Data-in satisfies the specified setup and hold times for falling edge of DL.

ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{SSQ}}=0 \mathrm{~V}$)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Voltage Relative to $\mathrm{V}_{\text {SS }}$ Pin Except V_{CC} and $\mathrm{V}_{\mathrm{CCQ}}$	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current (per I/O)	$\mathrm{I}_{\text {out }}$	± 20	mA
Power Dissipation	PD_{D}	2.0	W
Temperature Under Bias	$\mathrm{T}_{\text {bias }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Operating Temperature	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {Stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.
This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established
This device contains circuitry that will ensure the output devices are in $\mathrm{High}-\mathrm{Z}$ at power up.

DC OPERATING CONDITIONS AND CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCQ}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$, Unless Otherwise Noted)
RECOMMENDED OPERATING CONDITIONS (Voltages referenced to $\mathrm{V}_{S S}=\mathrm{V}_{S S Q}=0 \mathrm{~V}$)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage (Operating Voltage Range)	$V_{\text {cc }}$	4.5	5.0	5.5	V
Output Buffer Supply Voltage $(5.0 \mathrm{~V}$ TTL Compatible) $(3.3 \mathrm{~V} 50 \Omega$ Compatible)	$\mathrm{V}_{\text {CCQ }}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.6 \end{aligned}$	V
Input High Voltage	V_{IH}	2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Input Low Voltage	V_{IL}	-0.5^{*}	-	0.8	V

${ }^{*} \mathrm{~V}_{\mathrm{IL}}$ (min) $=-3.0 \mathrm{~V}$ ac (pulse width $\leq 20 \mathrm{~ns}$)
DC CHARACTERISTICS

Parameter	Symbol	Min	Typ	Max	Unit
Input Leakage Current (All Inputs, $\mathrm{V}_{\text {in }}=0$ to V_{CC})	$\mathrm{l}_{\text {lkg }}(1)$	-	-	± 1.0	$\mu \mathrm{A}$
Output Leakage Current ($\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}$)	$1 \mathrm{lkg}(\mathrm{O})$	-	-	± 1.0	$\mu \mathrm{A}$
AC Supply Current (lout $=0 \mathrm{~mA}$, All Inputs $=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geq 3.0 \mathrm{~V}$, Cycle Time $\geq \mathrm{t}_{\text {AVAV }} \mathrm{min}$)	$\begin{aligned} & \text { ICCA12 } \\ & \text { ICCA15 } \\ & \text { ICCA20 } \\ & \text { ICCA25 } \end{aligned}$	$\begin{aligned} & \square \\ & \square \\ & \hline \end{aligned}$	$\begin{aligned} & 295 \\ & 275 \\ & 265 \\ & 255 \\ & \hline \end{aligned}$	$\begin{aligned} & 350 \\ & 330 \\ & 320 \\ & 310 \end{aligned}$	mA
Standby Current $\left(E=V_{I L}, \bar{E}=V_{I H}, l_{\text {out }}=0 \mathrm{~mA}\right.$, All Inputs $=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{I \mathrm{H}}$, $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geq 3.0 \mathrm{~V}$, Cycle Time $\geq \mathrm{t}_{\text {AVAV }} \mathrm{min}$)	ISB	-	40	50	mA
Output Low Voltage ($\mathrm{lOL}=+8.0 \mathrm{~mA}$)	V_{OL}	-	-	0.4	V
Output High Voltage ($1 \mathrm{OH}=-4.0 \mathrm{~mA}$)	V_{OH}	2.4	-	-	V

CAPACITANCE ($\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{dV}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Typ	Max	Unit
Input Capacitance (All Pins Except DQ0 - DQ15)	$\mathrm{C}_{\text {in }}$	4	6	pF
Input/Output Capacitance (DQ0 - DQ15)	$\mathrm{C}_{\text {out }}$	8	10	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

$\left(\mathrm{V}_{C C}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{CCQ}}=3.3 \mathrm{~V}\right.$ or $5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ ，Unless Otherwise Noted）
Input Timing Measurement Reference Level
1.5 V
Input Pulse Levels 0 to 3.0 V

Output Timing Reference Level 1.5 V

Output Load ．．．．．．．．．．．．．See Figure 1 Unless Otherwise Noted

Input Rise／Fall Time
．． 3 ns
ASYNCHRONOUS READ CYCLE TIMING（See Notes 1，2，3，and 4）

Parameter	Symbol	62995A－12		62995A－15		62995A－20		62995A－25		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Read Cycle Times	${ }^{\text {t }}$ AVAV	15	－	15	－	20	－	25	－	ns	5
Access Times： Address Valid to Output Valid E，E＂True＂to Output Valid Output Enable Low to Output Valid	${ }^{\text {t }} \mathrm{AVQV}$ tetav tGLQV	二	$\begin{gathered} 12 \\ 12 \\ 5 \end{gathered}$	二	$\begin{gathered} 15 \\ 15 \\ 6 \end{gathered}$	－	20 20 8	二	$\begin{aligned} & 25 \\ & 25 \\ & 10 \end{aligned}$	ns	6
Output Hold from Address Change	taxQx	4	－	4	－	4	－	4	－	ns	
Output Buffer Control： E，E＂True＂to Output Active $\overline{\mathrm{G}}$ Low to Output Active E，E＂False＂to Output High－Z \bar{G} High to Output High－Z	tetax tglax tEFQZ tGHQZ	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	－ 9 5	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	－ 9 6	2 2 2 2	- 8	2 2 2 2	二 10 10	ns	7
Power Up Time	teticca	0	－	0	－	0	－	0	－	ns	

NOTES：

1．LE and $D L$ are equal to $V_{I H}$ for all asynchronous cycles．
2．Write Enable is equal to V_{IH} for all read cycles．
3．$E T$ is defined by \bar{E} going low coincident with or after E goes high，or E going high coincident with or after \bar{E} goes low．
4．$E F$ is defined by \bar{E} going high or E going low．
5．All read cycle timing is referenced from the last valid address to the first transitioning address．
6．Addresses valid prior to or coincident with \bar{E} going low or E going high．
7．Transition is measured $\pm 500 \mathrm{mV}$ from steady－state voltage with output load of Figure 1B．This parameter is sampled and not 100% tested． At any given voltage and temperature，$t_{E F Q Z}$ is less than $t_{E T Q X}$ and $t_{G H Q Z}$ is less than $t_{G L Q X}$ for a given device．

AC TEST LOADS

Figure 1A

Figure 1B

NOTE：For information on output I－V characteristics，see Chapter 8，Section 1.

ASYNCHRONOUS WRITE CYCLE TIMING (See Notes 1, 2, 3, 4, and 5)

Parameter	Symbol	62995A-12		62995A-15		62995A-20		62995A-25		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Write Cycle Times	tavaV	15	-	15	-	20	-	25	-	ns	6
Setup Times: Address Valid to End of Write Address Valid to E, E "False" Address Valid to \bar{W} Low Address Valid to E, E "True" Data Valid to \bar{W} High Data Valid to E or E"False" Byte Write Low to \bar{W} High Byte Write High to \bar{W} Low (Abort) Byte Write Low to E, E "False"	${ }^{\text {taVWH }}$ $t_{\text {AVEF }}$ $t_{\text {AVWL }}$ tavet tDVWH tDVEF ${ }^{t} \mathrm{BW} \times \mathrm{LWH}$ $t^{\text {t }} \mathbf{W} \mathbf{W} \times \mathrm{HWL}$ tBWxLEF	$\begin{aligned} & 10 \\ & 10 \\ & 0 \\ & 0 \\ & 5 \\ & 5 \\ & 4 \\ & 0 \\ & 4 \end{aligned}$	- - - - - -	$\begin{gathered} 13 \\ 13 \\ 0 \\ 0 \\ 6 \\ 6 \\ 6 \\ 0 \\ 6 \end{gathered}$	- - - - - - -	$\begin{gathered} 15 \\ 15 \\ 0 \\ 0 \\ 8 \\ 8 \\ 8 \\ 0 \\ 8 \end{gathered}$	- - - - - -	$\begin{gathered} 20 \\ 20 \\ 0 \\ 0 \\ 10 \\ 10 \\ 10 \\ 0 \\ 10 \end{gathered}$	- - - - - -	ns	2
Hold Times: \bar{W} High to Address Invalid E, E "False" to Address Invalid \bar{W} High to Data Invalid E, \bar{E} "False" to Data Invalid \bar{W} High to Byte Write Invalid E, E "False" to Byte Write Invalid	tWHAX tEFAX twHDX tEFDX twHBWxX tEFBWxX	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	- - - -	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	- - - - -	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	- - - -	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	- - - -	ns	
Write Pulse Width: Write Pulse Width Write Pulse Width Enable to End of Write Enable to End of Write	WLWH tWLEF tETWH tETEF	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	-	$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$	-	15 15 15 15	-	20 20 20 20	-	ns	9 8 8,9
Output Buffer Control: W High to Output Valid \bar{W} High to Output Active \bar{W} High to Output High-Z	tWHQV tWHQX tWLQZ	12 5 0	-	18 5 0	$\overline{-}$	20 5 0	-	25 5 0	$\frac{-}{10}$	ns	$\begin{gathered} 10 \\ 7,10 \end{gathered}$

NOTES:

1. LE and DL are equal to $V_{I H}$ for all asynchronous cycles.
2. A write occurs during the overlap of $E T, \bar{W}$ low and $\overline{B W x}$ low. An aborted write occurs when $\overline{B W x}$ remains at $V_{I H}$ while \bar{W} is low.
3. Write must be equal to $\mathrm{V}_{I H}$ for all address transitions.
4. $E T$ is defined by \bar{E} going low coincident with or after E goes high, or E going high coincident with or after \bar{E} goes low.
5. $E F$ is defined by \bar{E} going high or E going low.
6. All write cycle timing is referenced from the last valid address to the first transitioning address.
7. If \bar{G} goes low coincident with or after \bar{W} goes low, the output will remain in a high impedance state.
8. If E and \bar{E} goes true coincident with or after \bar{W} goes low the output will remain in a high impedance state.
9. If E or \bar{E} goes false coincident with or before \bar{W} goes high the output will remain in a high impedance state.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage with output load of Figure 1 B . This parameter is sampled and not 100% tested. At any given voltage and temperature, tWLQZ is less than tWHQX for a given device.

ASYCHRONOUS WRITE CYCLE

LATCHED READ CYCLE TIMING（See Notes 1，2，3，and 4）

Parameter	Symbol	62995A－12		62995A－15		62995A－20		62995A－25		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Read Cycle Times	tavav	15	－	15	－	20	－	25	－	ns	5
Access Times： Address Valid to Output Valid E，E＂True＂to Output Valid LE High to Output Valid Output Enable Low to Output Valid	tavQV tETQV tLEHQV tglav	二	$\begin{gathered} 12 \\ 12 \\ 12 \\ 5 \end{gathered}$	二	$\begin{gathered} 15 \\ 15 \\ 15 \\ 6 \end{gathered}$	－	$\begin{gathered} 20 \\ 20 \\ 20 \\ 8 \end{gathered}$	－	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 10 \end{aligned}$	ns	$\begin{aligned} & 5 \\ & 6 \end{aligned}$
Setup Times： Address Valid to LE Low E，\vec{E}＂Valid＂to LE Low Address Valid to LE High E，E＂Valid＂to LE High	taVLEL tEVLEL tavLEH teVLEH	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	－	2 2 0 0	二	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	二	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	－	ns	6
Hold Times： LE Low to Address Invalid LE Low to E，E＂Invalid＂	tleLAX tleLEX	3 3	二	3 3	－	3 3		3 3	－	ns	6
Output Hold： Address Invalid to Output Invalid LE High to Output Invalid	tAXQX tLEHQX1	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	二	4		$\begin{aligned} & 4 \\ & 4 \end{aligned}$		$\begin{aligned} & 4 \\ & 4 \end{aligned}$		ns	
Latch Enable High Pulse Width	tLEHLEL	5	－	5	－	5	－	5	－	ns	
Output Buffer Control： E，E＂True＂to Output Active $\overline{\mathrm{G}}$ Low to Output Active LE High to Output Active E，E＂False＂to Output High－Z LE High to Output High－Z \bar{G} High to Output High－Z	tETQX t GLQX tLEHQX2 tEFQZ tLEHQZ tGHQZ	2 2 2 2 2 2	二 9 9 5	2 2 2 2 2 2	- 9 9 6	2 2 2 2 2 2	- 10 10 8	2 2 2 2 2 2	- 10 10 10	ns	7

NOTES：
1．Write Enable is equal to $V_{I H}$ for all read cycles．
2．All read cycle timing is referenced from the last valid address to the first transitioning address．
3． ET is defined by $\overline{\mathrm{E}}$ going low coincident with or after E goes high，or E going high coincident with or after $\overline{\mathrm{E}}$ goes low．
4．$E F$ is defined by \bar{E} going high or E going low．
5．Addresses valid prior to or coincident with \bar{E} going low and E going high
6．All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of latch enable（LE）and data latch enable（DL）．
7．Transition is measured $\pm 500 \mathrm{mV}$ from steady－state voltage with output load of Figure 1 B ．This parameter is sampled and not 100% tested． At any given voltage and temperature，$t_{E F Q Z}$ is less than $t_{E T Q X}$ and $t_{L E H Q Z}$ is less than $t_{L E H Q X 2}$ and $t_{G H Q Z}$ is less than $t_{G L Q X}$ for a given device．

LATCHED READ CYCLES

(WRITE ENABLE)

LATCH ENABLE)

BWX (BYTE
WRITE ENABLE)

LATCHED WRITE CYCLE TIMING (See Notes 1, 2, 3, and 4)

Parameter	Symbol	62995A-12		62995A-15		62995A-20		62995A-25		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Write Cycle Times: Address Valid to Address Valid LE High to LE High	tavaV tLEHLEH	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	—	ns	5
Setup Times: Address Valid to End of Write Address Valid to End of Write E, \bar{E} "Valid" to LE Low Address Valid to LE Low E, E "Valid" to LE High Address Valid to LE High LE High to \bar{W} Low Address Valid to \bar{W} Low Address Valid to E, \bar{E} "True" Data Valid to DL Low Data Valid to \bar{W} High Data Valid to E or E "False" DL High to \bar{W} High DL High to E, E "False" Byte Write Low to \bar{W} High Byte Write Low to E, E "False" Byte Write High to \bar{W} Low (Abort)	tAVWH taVEF teVLEL tavLEL teVLEH tavLEH tLEHWL $t_{\text {AVWL }}$ tavet tDVDLL tDVWH tDVEF tDLHWH tDLHEF $t_{B W \times L W H}$ tBWxLEF tBWxHWL	$\begin{aligned} & 10 \\ & 10 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 4 \\ & 4 \\ & 0 \end{aligned}$	- - - - - - - - - - - - - -	$\begin{gathered} 13 \\ 13 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 0 \end{gathered}$	- - - - - - - - -	$\begin{aligned} & 15 \\ & 15 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \\ & 0 \end{aligned}$	- - - - - - - - - - - - -	$\begin{gathered} 20 \\ 20 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 0 \end{gathered}$	- -	ns	
Hold Times: LE Low to E, \bar{E} "Invalid" LE Low to Address Invalid DL Low to Data Invalid \bar{W} High to Address Invalid $\mathrm{E}, \overrightarrow{\mathrm{E}}$ "False" to Address Invalid \bar{W} High to Data Invalid $\mathrm{E}, \overline{\mathrm{E}}$ "False" to Data Invalid \bar{W} High to DL High E, E "False" to DL High \bar{W} High to Byte Write Invalid $\mathrm{E}, \overline{\mathrm{E}}$ "False" to Byte Write Invalid \bar{W} High to LE High	tleLEX tlelax tDLLDX twhax tefax twHDX tefDX twHDLH tefDLH tWHBWxX tEFBWxX tWHLEH	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	- - - - - - - - -	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	- - - - - - - - -	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	- - - - - - - - -	$\begin{aligned} & 3 \\ & 3 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$	- - - - - - - -	ns	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
Write Pulse Width: LE High to \bar{W} High Write Pulse Width Write Pulse Width Enable to End of Write Enable to End of Write	tLEHWH tWLWH tWLEF tETWH tETEF	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	-	$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	- - -	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	-	ns	$\begin{gathered} 6 \\ 9 \\ 8 \\ 8,9 \end{gathered}$
Latch Enable High Pulse Width	tLEHLEL	5	-	5	-	5	-	5	-	ns	
Output Buffer Control: \bar{W} High to Output Valid \bar{W} High to Output Active \bar{W} Low to Output High-Z	twHQV tWHQX twLQZ	$\begin{gathered} 12 \\ 5 \\ 0 \end{gathered}$	$\overline{-}$	15 5 0	$\overline{-}$	20 5 0	$\overline{-}$	$\begin{gathered} 25 \\ 5 \\ 0 \\ \hline \end{gathered}$	$\overline{-}$	ns	$\begin{gathered} 10 \\ 7,10 \end{gathered}$

NOTES:

1. A write occurs during the overlap of $\mathrm{ET}, \overline{\mathrm{W}}$ low and $\overline{\mathrm{BWx}}$ low. An aborted write occurs when $\overline{\mathrm{BWx}}$ remians at $\mathrm{V}_{\mid H}$ while $\overline{\mathrm{W}}$ is low.
2. Write must be equal to $\mathrm{V}_{\mathbb{H}}$ for all address transitions.
3. ET is defined by $\overline{\mathrm{E}}$ going low coincident with or after E goes high, or E going high coincident with or after $\overline{\mathrm{E}}$ goes low.
4. $E F$ is defined by \bar{E} going high or E going low.
5. All write cycle timing is referenced from the last valid address to the first transitioning address.
6. All latched inputs must meet the specified setup and hold times with stable logic levels for ALL falling edges of latch enable (LE) and data latch enable (DL).
7. If \bar{G} goes low coincident with or after \bar{W} goes low, the output will remain in a high impedance state
8. If E and \bar{E} goes true coincident with or after \bar{W} goes low the output will remain in a high impedance state.
9. If E or $\overline{\mathrm{E}}$ goes false coincident with or before \bar{W} goes high the output will remain in a high impedance state.
10. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage with output load of Figure 1B. This parameter is sampled and not 100% tested. At any given voltage and temperature, WLQZ is less than tWHQX for a given device.

LATCHED WRITE CYCLES

Figure 2. R3000 Application Example with 128K Byte Segregated Instruction/Data Cache Using Eight Motorola MCM62995A Latched SRAMs

ORDERING INFORMATION
(Order by Full Part Number)

Full Part Numbers - MCM62995AFN12 MCM62995AFN15 MCM62995AFN20 MCM62995AFN25

