
United States Patent (19)
Bealkowski et al.

4,928,237
May 22, 1990

11) Patent Number:
45 Date of Patent:

54 COMPUTER SYSTEM HAVING MODE
NDEPENDENT ADDRESSING

75 Inventors: Richard Bealkowski, Delray Beach;
Richard A. Dayan, Boca Raton;
David J. Doria, Boca Raton; Scott G.
Kinnear, Boca Raton; Jeffrey I.
Krantz, Boca Raton, all of Fla.;
Robert B. Liverman, Raleigh, N.C.;
Guy G. Sotomayor, West Palm
Beach, Fla.; Donald D. Williams;
Gary A. Vaiskauckas, both of Boca
Raton, Fla.
International Business Machines
Corp., Armonk, N.Y.

(21) Appl. No.: 30,789

73) Assignee:

(22 Filed: Mar. 27, 1987
5ll Int. Cl.. G06F 9/00
52 U.S. C. 364/200; 364/232.9;

364/254.8
(58) Field of Search. 364/200 MS File, 900 MS File
(56) References Cited

U.S. PATENT DOCUMENTS

4,004,278 1/1977 Nagashima 340/172.5
4,084,224 4/1978 Appell et al. 364/200
4,128,875 12/1978 Thurber et al. .
4,270,167 5/1981 Koehler et al. 364/200
4,296,468 9/1981 Bandon et al. .
4,315,321 2/1982 Parks, III et al. 364/900
4,442,484 4/1984 Childs, Jr. et al. . 364/200
4,514,805 4/1985 McDonough et al. 364/200
4,727,480 2/1988 Albright et al. 364/200
4,736,290 4/1988 McCallion 364/200
4,747,040 5/1988 Blanset et al... ... 364/200
4,779,187 10/1988 Letwin 364/200
4,825,358 6/1987 Letwin .

REAL COMMON DATA AREA

OFFSET OATA PTRS

COUNT OF LOS
OB POINTER LI)

FTT POINTER LO

OB POINTER LO n
FTT POINTER LOn

DATA PTR

-- DATA PTR

FUNCTION POINTER -

h' -- - - - - - -

ANCHORSEGMENT

ANCHOR SELECTOR

OB O n

DEW CE DATA

MEMORY

:

FUNCTION in POINTER H- function a - Function in PolNTER

4,849,875 7/1989 Fairman et al. 364/200

FOREIGN PATENT DOCUMENTS
0.197552 10/1986 European Pat. Off. .
0208429 12/1986 European Pat. Off. .

OTHER PUBLICATIONS
Childs, Jr., et al.; "A Processor Family for Personal
Computers'; 1984.
InteliaPX286 Operating Systems Writer's Guide, Intel
Corporation, 1983.
Intel iAPX286 Programmer's Reference Manual, Intel
Corporation, 1983.
Primary Examiner-Gareth D. Shaw
Assistant Examiner-Rebecca L. Rudolph
Attorney, Agent, or Firm-Winfield James Brown, Jr.
57 ABSTRACT
A computer system and method for operating a com
puter system capable of running in mutually incompati
ble real and protected addressing modes, in which pro
grams written for one mode can be run in the other
mode without modification. The operating system using
BIOS assembles two different common data areas for
the two modes, each inclusive of device block pointers,
function transfer table pointers, data pointers, and func
tion pointers. The common data area for the real mode
is assembled first. To assemble the pointers for the pro
tected mode common data area, the offset values from
the real mode area are copied directly, and then selector
values are inserted whose physical addresses corre
spond to the segments of the corresponding pointers in
the real mode area. The selector values are derived
from a segment descriptor table.

14 Claims, 6 Drawing Sheets

PROTECTED COMMON DATA AREA

OFFSET DATA PTRS

COUNT OF LOS
O8 POINTER LO

FTT POINTER LO

D8 POINTER LO n
FTT POINTER LID n

DATA PTR

DATA PTR 0 e-d

DATA PTR COUNT

FUNCTION PONTER

U.S. Patent May 22, 1990 Sheet 1 of 6 4,928,237
FG

6 MB
USER AREA IN FG5

PROTECTED MODE
ONLY

MB
FEATURE AND PLANAR ROM'S

752 KB
VOEO BUFFERS

640 KB
USER AREA N

REAL OR PROTECTED
MODE

40 KB
BIOS/OPERATING SYSTEM

O KB

32-BIT REA FG.2
MODE POINTER PHYSICAL

MEMORY
SEGMENT a- as

3. 1615 O

(n.2). 26
SEGMENT

n+

n ..). 26
SEGMENT

f

- (n)- 2
SEGMENT
n

(n-1). 26

-

U.S. Patent May 22, 1990 Sheet 2 of 6 4928,237
15 15 O O

SEGMENT 0000

FG3

20-BT PHYSICAL
ADDRESS MEMORY

32-BIT PROTECTED Insioel
MODE POINTER CPU) FG4

3. 6 5 O
SELECTOR PHYSICAL

SEGMENT

SEGMENT
-

SEGMENT SEGMENT DESCRIPTOR
BASE ADDRESS

ro to unroom ammura -a-a-as anon a -amala -wa.

U.S. Patent May 22, 1990 Sheet 3 of 6 4928,237
FG 6

REAL COMMON DATA AREA PROTECTED COMMON DATA AREA
ANCHOR SEGMENT

OFFSET DATA PTRS OFFSET DATA PTRS

COUNT OF LIDS ANCHOR SELECTOR COUNT OF LOS
DB POINTER LID DB POINTER LD 1

FTT POINTER LO FTT POINTER LO

D8 POINTER LIO
FTT POINTER LID n

DATA PTR p

OB O n

DEVICE DATA
DB POINTER LID n

FTT POINTER LO n

DATA PTR p

DATA PTR 0 DATA PTR 0

DATA PTR COUNT DATA PTR COUNT

FUNCTION POINTER FUNCTION POINTER

FUNCTION m POINTER FUNCTION in POINTER

U.S. Patent May 22, 1990

CALL ABIOS TO
BULD SYSTEM

PARAMETERS TABLE
2

CALL ABIOS TO BUILD
INITIALIZATION TABLE

22

. ALLOCATE REAL COA,
INCLUDING D8s, FTTS AND

DATA POINTERS

23
CALL INTOB ROUTINE FOR
INT TABLE ENTRY TO
BUILD FTT, DB etc

AL ENTRIES
COMPLETE

25 Y

ALLOCATE PROTECT CDA
26
COPY OFFSET PORTION
OF DB PTR FROM REAL
COATO PROTECT COA

HAS
SEGMENT BEEN

ALLOC. A SELECTOR
N GOT

Sheet 4 of 6

ALLOCATE A SELECTOR
WHOSE PHYSICAL ADDR
EQUALS THE SEGMENT

4928,237
29

copy IT TO THE SELECTOR PORTION
IN THE PROTECT COA

30

ALLOCATE PROTECT MODE FTI
3.

COPY OFFSET OF PROTECT MODE FTT
TO FTT POINTER

HAS
PROTECT MODE

SELECTOR BEEN > N
ALLOCATED

33
ALOCATE SELECTOR
WHICH POINTS TOFTT,

34
COPY IT TO THE SELECTOR PORTION
IN THE PROTECT CDA

GA)

FG 7A

U.S. Patent May 22, 1990 Sheet 5 of 6 4928,237
35

COPY OFFSET PORTION OF FUNCTION
PTR FROM REAL FTT TO
PROTECT FTT

36 37
HAS

SEGMENT BEEN N ALLOCATE A SELECTOR WHOSE PHYSICAL
ALLOC. A SELECTOR ADOR EOUAS THE SEGMENT -

COPY IT TO THE SELECTOR PORTION
IN THE PROTECT FTT

39
All

FUNCTION POIN
TERS DONE

43

COPY IT TO THE SELECTOR
PORTION IN THE
PROTECT COA

40
ALL

LOGICAL IDs DB
PTRS AND FTT PTRs

DONE

4 Y 44
ALL

DATA POINTERS
OONE

COPY OFFSET PORTION OF
DATA PTRS FROM REAL
CDA TO PROTECT CDA

42

ALLOCATE A SELECTOR
WHOSE PHYSICAL ADDR
EQUALS THE SEGMENT

U.S. Patent May 22, 1990

F. G8

60 ACCESS
"CURRENT" CDA
ANCHOR POINTER

ACCESS
LOGICALIO

MULTIPLY LOGICALID
BY 8 TO OBTAN OFF
SET OF OB POINTER

ACCESS
OB POINTER

6

62

63

Sheet 6 of 6

FIG.9
4928,237

ALLOCATE AND FILL
N RB FOR

DES RED REQUEST

70

ACCESS
"CURRENT" CDA

ANCHOR POINTER
7

SAVE ANCHOR POINTER
INST ACK FRAME WA

PUSH INSTRUCTION

SAVE RB POINTER
N STACK FRAME WA
PUSH INSTRUCTION

ACCESS
LOGICAL ID
FROM RB

74

MULTIPLY LOGICALID
BY 8 TO OBTAIN OFF
SET OF DB POINTER

ACCESS FTT POINTER
4 BYTES BEYONO AD
DRESS OF DB POINTER

76

SAVE FTT POINTER
INST ACK FRAMEWA

PUSH INSTRUCTION
77

SAVE DB POINTER
INSTACK FRAME WIA

PUSH INSTRUCTION

CALLDESIRED
FUNCTION IN FTT

78

79

1.

COMPUTER SYSTEMI HAVING MODE
INDEPENDENT ADDRESSING

DESCRIPTION
TECHNICAL FIELD

The present invention relates to a computer system
employing a processor having more than one address
ing mode. More specifically, the invention pertains to
such a computer system which is capable of running the
same applications program in each of plural addressing
modes.

BACKGROUND OF THE INVENTION
Microcomputers (personal computers) are being re

quired to perform more and more complex data pro
cessing tasks while not suffering a degradation in re
sponse speed. On the other hand, in order to perform
the more sophisticated tasks, additional device drivers,
networking programs, host attachment programs, ses
sion managing programs, etc., must be loaded into the
available memory space. The amount of space left for
the user's applications programs is thus shrinking, forc
ing undesirable trade-offs to be made among storage,
performance, and function.
To remedy this problem, microprocessors have lately

become available in which the amount of addressable
memory has been greatly expanded. For example, for
the Intel Corporation 8088/8086 microprocessor (here
inafter a microprocessor will be referred to for conve
nience as a "CPU' - central processing unit), the
amount of addressable memory is about 1 MB (Mega
Bytes). while for the newer 80286 CPU. about 16 MB
can be addressed.
The 80286, however, employs two different and mu

tually incompatible addressing modes. The first mode,
termed the "real' mode, is exactly the same addressing
mode employed in the 8088/8086 CPU, and hence pro
grams written for a machine employing the 8088/8086
CPU, such as the vast array of software written for the
IBM PC computer and compatibles, can be run in the
real mode since the same BIOS (Basic Input-Output
System) can be used directly. In the real mode, how
ever, since the addressing mode is in fact the same as for
the 8086/8088, the amount of addressable memory is
still limited to about 1 MB. p. The second mode, termed
the "protected' mode, employs a different memory
addressing scheme, and with this scheme can address up
to about 16 MB of memory. However, because the
addressing mode is indeed different, the earlier BIOS
cannot be used successfully, and hence computers
which have employed the 80286 CPU have not been
able to simultaneously take advantage of the increased
amount of available memory in the protected mode and
run software written for the 8086/8088 CPU.
FIG. 1 shows a memory map of a typical microcom

puter application employing an 80286 CPU and show
ing an example of how the memory may be organized.
Memory addresses in the range of 0 KB (KiloBytes) to
40 KB are taken up by the BIOS (Basic Input-Output
System) and OS (Operating System). the most famous
examples being PC DOS and MS DOS marketed by
Microsoft Corporation. The user is allocated the space
from 40 KB to 640 KB in both the real and protected
mode. The video buffers occupy 640KB to 752 KB, and
feature and planar ROMs (Read-Only Memories) 752
KB to 1 MB. This is all the memory that can be ad
dressed in the real mode. In the protected mode though

4,928,237

10

15

20

25

30

35

45

50

55

65

2
15 MB of additional addressable memory space is avail
able to the user.
To better understand the problem solved by the in

vention, the two addressing modes will now be de
scribed in more detail.

In both the 8088/8086 CPUs and in the real mode in
the 80286 CPU, physical memory is addressed directly
using 32-bit pointers. As shown in FIG. 2, each 32-bit
pointer is composed of a 16-bit offset (bits 0 to 15) and
a 16-bit segment (bits 16 to 31). The memory is divided
into 64 KB segments, and each of the 16-bit segment
values of the pointers corresponds directly to one of
these 64 KB segments in memory. That is, pointer seg
ment n, multiplied by 2 (equivalently, shifted one place
in hexadecimal), directly indicates the address of the
first eight-bit byte of data in segment n of the memory,
namely, the boundary between segments n-1 and n in
physical memory. The offset, on the other hand, indi
cates a displacement from the boundary between seg
ments n-1 and n.
As indicated by the diagram of FIG. 3, to obtain the

20-bit value which directly addresses a given byte loca
tion (operand address) in physical memory, the segment
value is multiplied by 2 and added to the offset value.
This 20-bit address is applied directly to the memory as
an address.

In the protected mode of the 80286, the BIOS does
not use physical memory in the form of segments and
offsets. Moreover, the memory is not divided up into 64
KB segments. Instead, "virtual' memory addressing is
employed in which the addresses do not correspond
directly to distinct locations in physical memory. To
allow for more efficient use of the available memory
space while still retaining relative ease of addressing,
the memory is again divided into segments, but the
segments may be of variable lengths. Generation of the
actual physical addresses is done internally to the 80286
CPU, out of reach of the user and BIOS.
The protected addressing mode will be explained in

more detail with reference to FIG. 4 of the drawings.
As in the case of the 8088/8086 and real mode, the

BIOS addresses memory using a 32-bit pointer. In the
protected mode, the lower 16 bits (bits 0 to 15) of the
pointer are also referred to as an offset. Because its
function is different than that of the segment in the
8088/8086 and real mode the upper 16-bit portion of the
pointer is termed a "selector'. Instead of merely multi
plying it by 2 and adding it to the offset, the selector is
used as a pointer to a segment descriptor contained in a
segment descriptor table, which is assembled in a prede
termined area of the physical memory. Each segment
descriptor contains a 24-bit value, which indicates the
base address (lower boundary address) of the corre
sponding segment in physical memory. To obtain the
actual address of a desired operand in physical memory,
the 24-bit segment descriptor value retrieved by the
selector is added to the offset.

Because the selectors employed in the protected
mode thus have a function which is much different than
and nonequivalent to that of the segments in the
8088/8086 and real mode, the BIOS designed for the
8088/8086 and real mode, which uses segments in ad
dressing, cannot operate directly in the protected mode,
making it impossible to run in the protected mode pro
grams written to use the BIOS developed for the
8088/8086 and real mode. While such programs can of
course be run on the 80286 CPU in the real mode, it is

4,928,237
3

a disadvantage not to also be able to run them in the
protected mode.

OBJECTS OF THE INVENTION
Accordingly, it is an object of the present invention

to provide a computer system and a method for operat
ing a computer system in which the above-discussed
drawbacks have been eliminated.
More specifically, it is an object of the invention to

provide a computer system and a method for operating
a computer system in which a single BIOS is capable of
supporting programs both in the protected mode and in
the real mode.

SUMMARY OF THE INVENTION

In accordance with the above and other objects of the
invention, there is provided a computer system and a
method of operating a computer system having mutu
ally incompatible first and second addressing mode
wherein, for each addressing mode, a common data area
table is assembled containing pointers used to initiate
the various data transfer tasks and other basic input
/output operations which the operating system or appli
cations programs may need. Each pointer in the com
mon data area table for the first mode is equivalent in
function to a respective one of the pointers in the com
mon data area table for the second mode. However, the
pointers in the two tables are assembled for their respec
tive addressing modes.

In the case of real and protected modes as discussed
above, the pointers for the real mode common data area
are each composed of a segment and an offset, and those
of the protected mode common data area are composed
of selectors and offsets. The offsets of the pointers in the
protected mode table which point to addresses external
to the common data area are identical in value to those
of corresponding pointers in the real mode table, while
the selectors correspond in physical address to the seg
ments of the corresponding pointers.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a memory map of an example of a computer
system employing a CPU having real and protected
addressing modes.
FIG. 2 shows a portion of a main memory in the real

mode and illustrates how the memory is addressed using
offsets and pointers.
FIG. 3 depicts how segments and offset values are

manipulated and added to produce physical memory
addresses in the real mode.
FIG. 4 shows a portion of a main memory in the

protected mode and illustrates how the memory is ad
dressed using offsets and pointers.

FIG. 5 is a diagram showing how the BIOS code is
arranged in accordance With the present invention.
FIG. 6 is a map of a bimodal common data area in

accordance with the invention.
FIGS. 7A and 7B are a flowchart showing in detail

how the bimodal common data area illustrated in FIG.
6 is assembled.
FIG. 8 is a flowchart showing an example of how a

device block pointer is obtained for a given logical ID.
FIG. 9 is a flowchart illustrating how a request is

made to the BIOS in the computer system of the inven
tion.

5

10

15

20

25

30

35

40

45

50

55

65

4.
DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT OF THE

INVENTION

Referring first to the diagram of FIG. 5, there is
shown therein a memory map for the BIOS code em
ployed in the computer system of the invention.
The BIOS code is composed of three parts: POST,

CBIOS and ABIOS. POST (Power-On Self Test) is
used for performing initial self testing and other basic
start-up functions, including extracting the boot record
from the system disk and subsequent loading of the
operating system into memory. CBIOS (Compatibility
Basic Input-Output System) contains the BIOS used by
applications programs for performing input-output op
erations (transfers of data to and from memory, periph
erals, etc.) in the real mode only and in a single-tasking
environment. ABIOS (Advanced Basic Input-Output
System) contains the BIOS used by applications pro
grams for performing input-output operations in a bino
dal (i.e. effective in both real and protected modes),
multi-tasking environment, as well as the BIOS routines
used by the operating system for constructing tables
required for the present bimodal addressing operations.

In accordance with the present invention, the ABIOS
is given the capability of operating either in the real
mode or the protected mode. The way in which this is
done is for the ABIOS to assemble bimodal CDAs
(Common Data Areas), one for the real mode and one
for the protected mode. The entries contained in the
two CDAs are identical in function, but in the real
mode CDA the pointers are described in terms of seg
ments and offsets, while in the protected mode CDA
they are described in terms of selectors and offsets. If
the operating system intends to execute BIOS only in
the real mode, then only the real mode CDA need be
assembled and used, whereby BIOS-controlled data
transfers for applications programs take place in the
previously known manner for operations in the real
mode. Before the operating system can execute BIOS in
the protected mode, however, the protected mode
CDA must be assembled. By use of the protected mode
CDA, which may be made to produce addresses identi
cal to those produced via a corresponding section of the
real mode CDA, programs initiated in one mode can be
continued in the other mode, at the user's option and
without requiring mode switching operations for con
tinuation. Hence, by providing such CDAs for support
ing corresponding addressing operations in both modes,
the ABIOS code can be made to operate essentially
“transparent' to the mode in which the user has se
lected to run the CPU. The result is mode-independent
addressing for the applications programs.
An example of bimodal CDAs is shown in accompa

nying FIG. 6. The following abbreviations are used in
FIG. 6 for simplicity:
LogicalD (LID)-Each LID corresponds to and

identified a requested device or device controller. Each
device or device controller available to ABIOS has a
LID associated therewith.
Device Block (DB)-The DB is a working storage

area allocated by the operating system which contains
hardware port addresses, interrupt levels, and device
state information.

Function Transfer Table (FTT)-The FTT is a per
manent storage area allocated by the operating system
and which contains the pointers to each ABIOS func
tion routine.

s

4,928,237
5

ABIOS Data Pointer (Data Ptr)-The data pointers
supply the ABIOS with addressability to particular
portions of memory in the bimodal environment. Exam
ples are the pointers to the video buffers.
As can readily be appreciated from FIG. 6, in gen

eral, the entries in the two CDAs are entirely identical
in function and in their place within the respective ta
bles, the only difference is that the pointers in the real
mode CDA are composed of segment and offset values,
and the pointers in the protected mode CDA are com
posed of selectors and offsets. Thus, by merely employ
ing the CDA corresponding to the present operating
mode of the CPU, so far as the remainder of the BIOS,
the operating system, and the applications programs are
concerned, all BIOS operations are performed in the
identical manner between the two modes. That is, as
illustrated in FIG. 6, the corresponding DB pointer
LID n in the two tables both point to the same DBLID
n, the corresponding data pointer 0 in the two tables
point to the same identical location in memory, and the
same function m pointers point to the same identical
function m.
FIG. 7 is a flowchart describing in detail the manner

in which the two CDAs are assembled. The operations
to be described next are conducted during system ini
tialization, generally after execution of the POST tests
and with the system running in real mode.
From the START point, the ABIOS is called to build

the systems parameters table in step 20. In step 21,
ABIOS is called to build the initialization table. Next, in
step 22, memory space is allocated for the real mode
CDA, including the DBs, FTTs, and data pointers. In
subsequent step 23, an initial DB (InitDB) routine is
called for initial table entries to build the FTT, DB, etc.
Those having familiarity with the BIOS used in the
IBM AT computer will understand the further details
of how steps 20 to 23 are implemented.

After it has been determined in step 24 that all entries
in the real mode CDA table are complete, in step 25,
memory space is allocated for the protected mode
CDA. In following step 26, in accordance with an im
portant aspect of the invention, an offset portion of a
DB pointer in the real mode CDA copied directly to the
corresponding entry in the protected mode CDA. For
the offset value copied in step 26, in steps 27 and 28, a
selector is allocated whose physical address is equal to
the segment of the respective pointer in the real mode
CDA. In step 29, the selector is copied to the corre
sponding position in the protected mode CDA to corn
plete the pointer.
With reference to steps 30 to 34, an FTT pointer is

assembled in a slightly different manner than the DB
pointers in steps 26 to 29 since the FTT pointers point to
other pointers within the CDA rather than addresses
external to the CDA. In step 30, a protected mode FTT
is allocated and, in step 31, a copy of the, offset of the
corresponding real mode FTT pointer is copied to the
protected mode FTT pointer. In subsequent step 32, a
determination is made as to whether the protected
mode selector has been allocated. If not, in step 33, a
selector is allocated which points to the FTT. In step
34, the selector is copied to the selector portion in the
protected mode CDA.

Similar to the assembly of the DB pointer insteps 26
to 29, in steps 35 to 38, a corresponding function pointer
is assembled in the protected mode CDA.

Step 39 tests to determine if all pointers of the FTT
have been completed. Steps 35 to 39 are repeated until

5

10

15

20

25

30

35

45

50

55

65

6
all pointers of the FTT have been assembled. Following
step 40 tests to determine whether all logical IDs, DB
pointers, and FTT pointers have been completed. If not,
the process loops back to step 26, and steps 26 to 40 are
repeated until all logical IDs, DB pointers, and FTT
pointers have been completed.
To finish the protected mode CDA, in step 41, the

data pointers (e.g., pointers to the video buffer) are
assembled. This is done in the same fashion as above. In
step 41, the offset portion of a data pointer from the real
mode CDA is copied to the corresponding entry in the
protected mode CDA, and in step 42, a selector is allo
cated having a physical address equal to the segment in
the corresponding real mode CDA entry. The selector
is copied into the protected mode CDA in step 43. In
step 44, it is determined if all data pointers have been
completed. If not, the process loops back to step 41,
whereupon steps 41 to 44 are repeated until all data
pointers have been finished. At that time, assembly of
both CDAs is completed.
To show an example of how the assembled CDA is

used by the ABIOS, FIG. 8 is a flowchart showing an
example of how a DB pointer is obtained from the bi
modal CDA for a given logical ID.

First, the "current" CDA anchor pointer and the
corresponding logical ID are accessed in steps 60 and
61. In step 62, the logical ID is multiplied by 23 (=8) to
obtain the offset for the DB pointer. Then, in step 63,
the DB pointer can be accessed.

FIG. 9 is a flowchart showing how a program makes
a request to the ABIOS.

First, in step 70, a request block for the specific re
quest at hand is allocated and filled in. In step 71, the
"current" CDA anchor pointer is accessed. In subse
quent steps 72 and 73, the anchor pointer and the RB
pointer are saved in the stack frame using PUSH in
structions. The appropriate logical ID from the RB is
accessed in step 74. (There is of course a one-to-one
correspondence between logical IDs and device entries
in the CDA.) In step 75, the logical ID is multiplied by
23 to obtain the offset of the DB pointer (four bytes/.
pointer, two pointers). The respective FTT pointer four
bytes beyond the address of the DB pointer is accessed
in step 76, and this FTT pointer is saved to the stack
frame using a PUSH instruction in step 77. In step 78,
the DB pointer is saved to the stack frame, also using a
PUSH instruction. Finally, in step 79, the desired func
tion is called in the FTT.

Further applications are also contemplated within the
scope of the invention. For example, "patching' of the
BIOS code to effect changes thereto can be achieved
using the FTT pointers. That is, FTT pointers can be
inserted in the CDAs which cause redirection to patch
routines.
This completes the description of the preferred em

bodiment of the invention. It is to be understood though
that while modifications can be made to the structure
and teachings of the present invention as described
above, such modifications fall within the spirit and
scope of the present invention as specified in the claims
appended hereto.
Having thus described our invention, what we claim

as new, and desire to secure by Letters Patent, is:
1. A personal computer system having a system pro

cessor, said personal computer system comprising:
an addressable memory having a first and second

portion, the first portion of memory being divided
into a predetermined number of segments and the

