
HHHHHIIII
USOOS24561SA

United States Patent (19) 11 Patent Number: 5,245,615
Treu 45) Date of Patent: Sep. 14, 1993

54) DIAGNOSTIC SYSTEM AND INTERFACE (56) References Cited
FOR A PERSONAL COMPUTER PUBLICATIONS

"Loadable ABIOS' by Richard Bezlkowski, IBM Per
(75) Inventor: Albert R. Treu, Boca Raton, Fla. sonel Systems Magazine/Jan. 93.

Primary Examiner-Vincent P. Canney
73 Assignee: International Business Machines Attorney, Agent, or Firm--George E. Grosser; Douglas

Corporation, Arnonk, N.Y. R. McKechnie
57 ABSTRACT

(21) Appl. No.: 711,003 A personal computer has a NVRAM comprising an
error log for storing predetermined error log informa
tion at predetermined locations therein. The informa

(22 Filed: Jun. 6, 1991 tion is accessible by various programs such as a POST
program, a diagnostics program, and an operating sys
tem program. Access is made by BIOS interrupt calls

51 Int. C. ... G01R 31/28 through a BIOS interface. The NVRAM also stores
52 U.S. C. 371/16.5; 371/22.5 vital product data and system setup data.
58 Field of Search 371/16.5, 18, 22.5,

371/2.5.1, 29.1 12 Claims, 7 Drawing Sheets

1OO

96 SYSTEM AUTOMATIC STORE SETUP
SETUP AND CONFIGURATION AND OTHER DATA

INSTALL 98

STOREVPD

106 102

RESTART POST ENING
104 107

OS LOAD ANALYZEERROR LOG

110 OS
NALIZATION RECONFIGURE

SYSTEM
OPERATION

16 ERROR HANDLING

U.S. Patent Sep. 14, 1993 Sheet 1 of 7 5,245,615

12 MCRO MATH

N FIG. 1
14 18 22

BC
14D ADAPTER 24

30 SCSI HD 26
37 DATA os -

86 REFERENCE

f

16

|- RASC REFERENCE

38 E 32 POST 72 40 POST 34
BUFFER 73

BIOS 46 C
36

131 74
42 PRINTER

76

IOC KEYBOARD-73
MOUSE

- S SERIAL
44 VFB SPEAKER

VRAM

TOKENRING 52
ADAPTER

TOKENRING

TEXTAND
GRAPHICS MONITOR

68

U.S. Patent Sep. 14, 1993 Sheet 2 of 7 5,245,615

OO

SETUP AND CONFIGURATION AND OTHER DATA
NSTALL 98

106 102

108 112
OSLOAD ANALYZE ERROR LOG

FIG. 2 110 OS
NITIALIZATION RECONFIGURE

86-9

NVRAM

U.S. Patent Sep. 14, 1993 Sheet 3 of 7 5,245,615

194

DETECTERROR- FIG. 4

INTERRUPTHANDLER

g ASSEMBLE FFDC INFO &
CREATE LOG INFO

2 WRITE LOG INFO IN - 2fO
ERROR OG

OS-ANALYZE LOG INFO

<> YES TO SEE FRETURN
2O4

COMPLETE INTERRUPT
HANDLNG

SET RETURN STATUS FLAG
SET CRITICAL STATUS FLAG

209 2O6
YES

& RESTART SYSTEM
NO m 212

2O7

<S> YES RETURN TO OS
NO

2O8 NORMAL INTERRUPT
RETURN

U.S. Patent Sep. 14, 1993 Sheet 4 of 7 5,245,615

250
STORE LOG INFO

N BUFFER

SET POINTER TO BUFFER

252
SETAH-21H, AL-04H

254 BIOS CALL INT 15H

Move INFoRoMRAM
BUFFER TO BIOS BUFFER

276

258 MAKE CRC ONNVRAM TO INVALID SET RETURN CODE TO
SEEF DATA SVALD NVALID DATAN NVRAM

VALID 278
RETURN TO CALLER

260
YES NCREMENT MULTIPLE

LOG COUNTER

NO

262 RN CODE TO SET RETURNC
ROOM IN LOG 2 FULLERROR LOG

YES 280

FIG. 5

264
MOVES DATA FROM BIOS

TO ERROR LOG
268
N SET TIME AND DATE

270
SET LOG ENTRY VALID

272 YES 284

RETURN TO OS

NO

CONTINUE
274

U.S. Patent Sep. 14, 1993 Sheet 5 of 7 5,245,615

POST ERROR 234 FIG. 6

23
POST FINDSERROR

POSTASSEMBLEFFDC ?
INFO & CREATE LOG

248

242 YES
CRITICAL NFORM USER OF ERROR
RROR2 IF POSSIBLE

NO

COMPLETE POST
& BOOTOS

PASS CONTROL TO OS

POST WRITES LOG INFO 2
NERROR LOG

2

6

38

4O

44

246

U.S. Patent Sep. 14, 1993 Sheet 6 of 7 5,245,615

FIG. 7
132 POSTANALYSIS READ

ERROR INFO FROM ERROR
OG

133
ALLOCATE BUFFER

135
SET POINTERTO BUFFER

137
SETAH-21H, AL-05H

139
BOS CALL INT 15H

f Z

MAKE CRCON NVRAM TO
SEEF DATAS VALD

MOVE LOG INTO BUFFER

S ETBX VALID ENTRIES

f38
f34

CAN DAGNOSTICS YES RUN DAGNOSTICS FOR

BE RUN/FRU
ERROR SOLATION

NO 147

NO SOLATE TO
FRU 2

149
YES

CALL FOR SERVICEOR
PROCEDURE TO SOLATE REPLACE FRU

FRU

U.S. Patent Sep. 14, 1993 Sheet 7 of 7 5,245,615

168
FIG. 8 DAGNOSTIC

170 s:
172 NO

TEST LOGICAREA

176 YES 184 COMPARE WITH
SAVED LOG INFO

NO

f74

READ AND SAVE
LOG INFO

786 NO
COMPARE 7

YES

DELETE RESOURCE,
NFORM OS

DELETE LOG ENTRY 8
BUILD OS NFO LOG

178
NO 90 ANY LOG

SAVED

192
18O

DELETE RESOURCE IF
NFORM USER- POSSIBLE 8, BUILD OS

MAYBE TEMPERROR INFO LOG

182

NORMAL TEST COMPLETE

5,245,615

DIAGNOSTIC SYSTEM AND INTERFACE FOR A
PERSONAL COMPUTER

FIELD OF THE INVENTION

This invention relates to the field of data processing,
and, more particularly, to an improved diagnostic sys
ten and interface for a personal computer.

BACKGROUND OF THE INVENTION

As is well known, personal computers are relatively
small and inexpensive data processing systems primarily
designed to provide a single user with independent
computing power. Personal computers are available in a
variety of sizes including desk-top, floor-standing, and
portable models. A typical personal computer includes
a system unit containing a microprocessor, a monitor, a
printer, an internal hard disk drive, and a diskette drive.
Specific examples are the different models of the IBM
PS/2 personal computers. In contrast, larger, more
expensive data processing systems such as the IBM
System/370 computers, are characterized as "main
frame' systems and are primarily designed to provide
computing power to multiple users. Mainframe systems
have also been provided with relatively elaborate diag
nostic systems which heretofore have been absent from
personal computers.

Diagnostic systems are provided to increase the reli
ability, availability, and serviceability (RAS) of data
processing systems. In general, diagnostic systems de
tect and analyze errors or faults that occur in the hard
ware and software portions of a data processing system
while the system is being tested or operated. A diagnos
tic system in a mainframe system typically detects er
rors as they occur and logs such errors for later analysis
by a diagnostic program. In contrast, diagnostic systems
particularly for the above examples of personal comput
ers, provide a narrow set of functions limited to display
ing to the user a cryptic error code or message as errors
are detected during a power on self test, or while the
system is operating normally, or as a result of running a
test or diagnostic program. The user is then left with the
problem of deciding what the code or message means
and what to do about it.
Another characteristic of mainframe systems is that

they are closed systems having RAS features oriented
to specific operating systems (OS). Status information is
stored in distributed places at the hardware level and
the particular operating system designed for the hard
ware "knows' where to go to obtain such information.
There is no interface and the operating system directly
accesses the desired information.

SUMMARY OF THE INVENTION

One of the objects of the invention is to provide an
improved diagnostic system and interface for use in an
open ended personal computer that is operable under
different operating systems.
Another object of the invention is to provide a diag

nostic system and interface for a personal computer,
which are operating system independent and can be
used with different operating systems.
A further object of the invention is to provide a per

sonal computer diagnostic system interface that is con
tained in a software layer beneath an operating system,
and provides an error logging communications area that

10

5

20

25

30

35

45

50

55

65

2
can readily be later accessed after error logging has
occurred.

Still another object of the invention is to provide a
personal computer diagnostic interface in a basic I/O
operating system (BIOS) for use in logging and access
ing error information in a non-volatile random access
memory (NVRAM).
Another object of the invention is to provide a novel

error log data structure in a NVRAM, for use in log
ging errors and diagnosis of such errors. .

Briefly, in accordance with the invention, a personal
computer has a NVRAM comprising an error log ad
dress space for storing predetermined error information
at predetermined locations. Such error information is
accessible by other programs, including an operating
system, through a BIOS interface and is independent of
the operating system.

DRAWINGS

Other objects and advantages of the invention will be
apparent from the following description taken in con
nection with the accompanying drawings wherein:
FIG. 1 is a block diagram of a personal computer

embodying the invention;
FIG. 2 is a flow diagram of the general operation of

the computer shown in FIG. 1;
FIG. 3 is a block diagram showing further details of

the NVRAM shown in FIG. 1;
FIG. 4 is a flow diagram of steps occurring when OS

detects a critical error;
FIG. 5 is a flow diagram illustrating steps for assem

bling error information and storing it in the error log;
FIG. 6 is a flow diagram of steps occurring during a

POST,
FIG. 7 is a flow diagram of analysis steps occurring

during power on self-test (POST); and
FIG. 8 is a flow diagram of steps occurring during

execution of a diagnostic program.
DETALED DESCRIPTION

Referring now to the drawings, and first to FIG. 1,
there is shown an exemplary data processing system
comprising a personal computer 10 operable under an
operating system such as PC DOS or OS/2. Computer
10 comprises a microprocessor 12 connected to a local
bus 14 which, in turn, is connected to a bus interface
controller (BIC) 16, a math coprocessor 18, and a small
computer system interface (SCSI) adapter 20. Micro
processor 12 is preferably one of the family of 80xxx
microprocessors, such as an 80386 microprocessor, and
local bus 14 includes conventional data, address, and
control lines conforming to the architecture of such
processor. Adapter 20 is also connected to a SCSI bus
22 which is connected to a SCSI hard drive (HD) 24
designated as the C-drive, the bus also being connect
able to other SCSI devices (not shown). SCSI HD 24
includes a first partition 26 for an operating system (OS)
and a second partition 28 for storing reference diskette
information. Adapter 20 is also connected to a
NVRAM30 and to a read only memory (ROM) 32 that
stores a POST program 34 for testing adapter 20 and
devices connected thereto through bus 22.
BIC 16 performs two primary functions, one being

that of a memory controller for accessing a main men
ory 36 and a ROM 38. Main memory is a dynamic ran
dom access memory (RAM) that comprises one or more
single, in-line, memory modules (SIMMS) and stores
programs and data for execution by microprocessor 12

5,245,615
3

and math coprocessor 18. ROM 38 stores a POST pro
gram 40 and a BIOS 42. POST program 40 performs the
primary test, i.e. POST, of the system when computer
10 is first powered on or is reset. An address and control
bus 37 connects BIC 16 with memory 36 and ROM 38.
A data bus 39 connects memory 36 and ROM 38 with a
data buffer 41 that is further connected to data bus 14D
of bus 14. Control lines 45 interconnect BIC 16 and data
buffer 41.
The other primary function of BIC 16 is to interface

between bus 14 and an I/O bus 44 designed in confor
mance with Micro Channel architecture. Bus 44 is fur
ther connected to an input/output controller (IOC) 46,
a video signal processor (VSP) 48, and a plurality of
Micro Channel connectors or slots 50. A token ring
adapter 52 is mounted in one of slots 50 and is further
connected to a token ring 54. Adapter 52 includes a
ROM 56 and a POST program 58 for testing adapter 52
and ring 54. VSP 48 is further connected to a video
RAM (VRAM) 60 and a multiplexor (MUX) 62.
VRAM 60 stores text and graphic information for con
trolling what appears on the screen of a monitor 68.
MUX 62 is further connected to a digital to analog
converter (DAC) 68 and to a connector or terminal 70
that is connectable to a video feature bus (VFB). DAC
66 is connected to monitor 68 that provides a conven
tional output screen or display for viewing by a user.
IOC 46 controls operation of a floppy disc drive 72

designated as the A:drive, a printer 74, and a keyboard
76. Drive 72 comprises a removable floppy disc such as
a reference diskette 73. IOC 46 also is connected to a
mouse connector 78, a serial port connector 80, and a
speaker connector 81 which allow various optional
devices to be connected into the system.
NVRAM. 30 includes a RAS communications inter

face (RASCI) 86, which as seen in FIG. 3, comprises
four address spaces for an error log 88, vital product
data (VPD) 92, setup data 90, and other data 94. FIG.2
illustrates the general operation of computer 10 relative
to use of NVRAM. 30 in accordance with certain as
pects of the invention. The general operation is shown
in the left and center columns while operations relative
to the NVRAM are shown in the right hand column.
The general operation begins with step 96 wherein the
computer is setup and software is installed in the same
general manner as is commonly done in connection
with initiating operation of the above mentioned PS/2
personal computers. During the course of step 96,
POST program 40 is initially run while reference dis
kette 73 is loaded in the A:drive. During the course of
running POST program 40 for the first time, a configu
ration error is detected, because the computer has not
yet been configured, and the user is prompted to run an
automatic configuration program on the reference dis
kette to perform step 98 and automatically configure
computer 10. Also, during step 96, the various options
are connected in the system, fixed disk 24 is formatted
and partitioned, and the desired OS software is in
stalled. During the course of configuring step 98, step
100 stores setup data and other data in spaces 90 and 94
of NVRAM. Such data is gathered in the usual fashion
that includes reading programmable option select
(POS) data from each adapter in the computer. Step 102
then gathers and stores the VPD in space 92.

After the hardware and software have been installed,
computer 10 is thereafter restarted in step 104 by either
turning the power back on or resetting the system by
simultaneously pressing the control, alt, and delete keys

10

15

20

25

30

35

45

50

55

65

4.
of keyboard 76. Step 104 is also performed upon each
subsequent restart of computer 10. After computer 10 is
thus restarted, a POST 106 is performed by running
POST program 40. In addition to testing the primary
components of computer 10, the POST also executes
adapter POST programs such as 34 and 58 to test their
associated subsystems or adapters. Upon successful
completion of POST 106, the OS kernel is loaded in step
108 into main memory 36 and the OS is initialized in
step 110. Afterward, the system begins normal opera
tion in step 116 where application programs are exe
cuted or run under control of the OS.

It is to be appreciated that errors can occur during
any stage of operation but that the most frequent occur
rence is during system operation in step 116. When an
error occurs or is detected, an entry is made in error log
88 as described in detail hereinafter. The error log is
analyzed in certain ones of the general steps described
above. During POST 106, the error log is analyzed as
described in detail relative to FIG. 7. During the course
of OS initialization step 110, step 112 reads error log 88
and analyzes any entries therein to determine whether
the computer can be reconfigured in step 114 so as to
allow the computer to be operated even though a non
critical error has occurred. A non-critical error is one
where the system can still be operated in some fashion
but at a degraded level. For example, if a printer has
developed a fault, the computer can be operated using
monitor 68 as an output device. A critical error is one
where further operational state cannot be maintained.
Examples are losing a large block of memory 36, or
losing use of drive 24 (C:drive). Upon completion of
step 110, control is passed to step 116 to commence
system operation of computer 10 wherein application
programs are executed under the control of the OS.

Referring to FIG. 3, BIOS 42 is a software interface
or "layer" that primarily isolates the operating system
and application programs from specific hardware de
vices. The operating system and application programs
make functional requests or calls to BIOS rather than
directly manipulating I/O ports and control words of
the hardware. BIOS 42 is accessed through an interface
126 of software interrupts and contains a plurality of
entry points corresponding to the different interrupts.
BIOS 42 provides many conventional services not ger
mane to the invention.

In connection with the invention, BIOS 42 uses INT
15H (hex) as the basic interrupt call with different func
tions related thereto being selected by the setting of the
AH and AL registers of microprocessor 12. VPD 92 is
stored directly into NVRAM 30 during setup and is
available thereafter through BIOS 42 on a read only
basis. VPD 92 is read by setting AH=D2H. Spaces 90
and 94 are accessible in a manner similar to the prior art.
Relative to accessing error log 88, register AH should
be set to 21H. Register AL is set as follows for the
indicated functions:

Setting Function
3 . Resetail entries in error log 88.
4. Write to error log.
5 Read from error log.
6 Invalidate single entry in error log.

In a preferred embodiment, error log 88 has a size of
109 contiguous bytes. The error log contains a data
structure in which predetermined information is stored

5,245,615
5

at predetermined locations to provide a standardized
communications area for use by different programs
including POST program 40, the OS, and diagnostic
program 122. Quite obviously, any programmer using
the error log has to know the log format or data struc
ture, the BIOS interface thereto, and any return codes.
Error log 88 includes a single byte for storing error log
status. The remaining bytes are divided into three error
log entries, each entry having thirty six bytes. Obvi
ously, the size and number of entries may vary to ac
commodate different computers. The error log status
byte uses the following bits thereof to store the indi
cated information:

Bit 7 Whether the OS has handled the log by
passing information to diagnostics.

Bit 6 Whether diagnostics has altered the system
and is passing information in the log.

Bit 5 Whether the log entry information requires
processing by diagnostics.

Each error log entry is divided a plurality offields for
storing the following general information:

Bytes General Information

0-3 LOG machine check status
4-25 Log format
26-29 Time of error
30-33 Date of error
34-35 Multiple log

In general, the log machine check status information
is a key as to what information is in the log format bytes.
The log format bytes explain an error as to which pro
gram, component or FRU produced the error, where
the error detector is located in the system, and what
failure or error occurred. The time of error and date of
error information identifies the time and date when an
error occurred. Such fields are set each time an entry is
made. Multiple log information is used to reduce the
size of the log and eliminate plural entries for the same
or similar errors by counting multiple occurrences of
same errors from a single source or of the same error
condition from different sources.
The following is further definition of the indicated

bytes for each entry:

Bytes 0-3 LOG machine check status
Byte 0 Log entry status
Bit 7 Log entry valid
Bit 6 Permanent error
Bit 5 Temporary error
Bit 0 Degraded mode-critical error

bypassed
Byte 1 Functional error further defines

logic status of error
Bit 7 Memory parity/ECC multiple bit error

error code extended status field
(bytes 14-25) has error address

Bit 6 ECC single bit error- error code
extended status field has error
address and syndrome check bits

Bit 5 ECC counter overflow
Bit 4 Processor error- error code extended

status field has RAS error registers
Bit 3 MO error- error code extended status

field has adapter slot in error, RAS
error registers

Bit 2 ABIOS log-error code extended status
field has pointer of ABIOS error log

Bit Default interrupt condition- error

O

15

20

25

30

35

40

45

50

55

65

6
-continued

code extended status field has
default interrupt condition

Byte 3
Bit O POST error information
Bytes 4-25 Log format
Byte 4 Type of log/functional area
Bits 7-4 Type of log
000 Problem
O010 Temporary
001 Performance- counters
000 History-problems repaired, update
01.01 Information
Bits 3-0 Functional area
000 Processor complex
000 Storage- DASD
001 Communications
000 I/O adapters, devices
01.01 Microcode
010 POST/diagnostics
011 Software, operating system
1000 Software, applications
Bytes 5-25 Systern error code
Byte 5-8 Error code identification field
Byte 9 Error code failure field
Byte 10-13 Error code location field
Byte 14-25 Error code extended status field
Byte 34-35 Multiple log (counters for same error)
Byte 34
Bit 7=0 Reduced log-multiple logs with same

information
Bit 3-0 Count field
Bit 7- System log identification (SLID)-

same ID for logs with information
about same error condition from
different source

Bit 6-0 System Log ID (SLID)
Byte 35 System log ID (SLID)

(Bytes and bits not mentioned above are reserved)

VPD 92 is provided for products supporting the
VPD function by including a ROM containing VPD
information for a particular product. Such information
is read from the product ROM into VPD 92 when the
system is first powered up after the product adapter has
been installed. Thus, relative to FIG. 1, when token ring
adapter 52 is installed, the VPD data in ROM 56 is read
into VPD 92. Specific VPD information includes a
unique ID for each product type or model, a part num
ber of a field replaceable unit (FRU) for ordering such
part, a replaceable unit part number identifying the part
for maintenance tracking, serial number, manufacturer
ID, equipment categories, resource characteristics of
functions associated with product or an indication that
the resources are not known or not supported, engineer
ing change level of FRU, device driver level, and diag
nostic level. VPD 92, in addition to containing such
information for each product, also contains an adapter
ID, a system unique ID including model/submodel and
BIOS revision level. Other information could also be
included as required.
As previously indicated, BIOS 42 is functionally lay

ered between RASCI 86 and OS 120 and is accessed
through a software interface 126 by the specific inter
rupt calls described above. POST program 40 is nor
mally above BIOS 42 and accesses RASCI 86 through
interface 126 along path 130 but also has a path 128 for
directly accessing error log 88 when an error occurs or
is detected during the initial steps of POST 40 which
occur before BIOS 42 is operational. Such direct ac
cessing is discussed below relative to FIG. 6. A diagnos
tic program 122 and setup utilities 124 operate above
BIOS 42 to access RASCI 86 through interface 126.
Computer 10 also includes hardware or NMI logic 125

5,245,615
7

which detects an error and creates an NMI signal that is
sent directly into BIOS 42 for handling by an NMI
interrupt handler therein.
The remaining figures in the drawings illustrate use of

the error log by different programs. FIGS. 4-6 deal
with error logging and what happens when an error
occurs, and FIGS. 7 and 8 deal with analysis of the
error log. Referring now to FIG. 4, it shows details of
step 118 (FIG. 2) for handling errors encountered dur
ing operation of the system. After an error has been
detected in step 194, an NMI signal or a device driver
invokes the BIOS interrupt handler in step 196. Step 198
assembles first failure data capture (FFDC) information
from hardware and software status information. Step
198 also includes creating error information which is
first stored or written into buffer 131. Such information
is then moved into and stored in the error log in step 200
as described in more detail below with reference to
FIG. 5. Step 202 checks a flag to see if the OS has a
recovery facility which would be used upon completion
of the error handling routine. If OS has a recovery
facility, a branch is made to step 210. If not, step 204
then completes the interrupt handling directly after step
202. Step 210 is done by the OS which analyzes the
information in the error log to see if a return should be
made to OS and sets a return status flag appropriately.
The OS also determines if the error is critical or non
critical and sets a critical status flag in accordance with
such determination. Upon completion of step 204, step
206 checks the critical status flag and if it set to indicate
a critical error, control passes to step 209 in which the
system must be restarted. If the error is non-critical,
then step 207 looks at the return status flag and branches
to steps 208 or step 212 dependent on the setting of the
flag. Step 208 returns in the manner of a normal inter
rupt. Step 212 returns to the OS for use of the recovery
facility.

FIG. 5 illustrates the detailed steps for using BIOS to
write or store information in error log 88. Before BIOS
is called, step 250 stores the error information in buffer
131, such information having been collected and for
matted in step 200 (FIG. 4). Step 251 then sets a pointer
to such buffer in the ES:DI register of microprocessor
12. Next, the AH and AL registers are respectively set
in step 252 for an error log write operation, and a BIOS
INT 15H call is made in step 254. BIOS then moves the
information from buffer 131 into a BIOS buffer (not
shown) and performs a character redundancy check
(CRC) on NVRAM. 30 to determine if the data therein
is valid, in step 258. If the data is invalid, step 176 sets a
return code indicating such fact, and step 278 returns to
the caller.

If the data in NVRAM. 30 is valid, step 260 then
checks to see if there is a similar entry, i.e., an entry for
the same error condition. If there is no similar entry,
step 262 checks to see if there is room in the error log
for a new entry, by looking at the valid entry bits. If
there is room for a new entry, step 264 moves the infor
mation or data in the BIOS buffer into error log 88.
BIOS then sets the time and date in the error log in step
270 and sets the log entry bit valid for the entry just
stored in step 262. Step 272 checks the OS return status
flag and branches to step 284 to return to the OS or
continues with step 274 with the next step in the process
which encountered the error. If step 260 determines
there is a similar entry, step 282 then increments the
multiple log counter in the error log, and branches to
step 268. If step 262 determines the log is full, then a

5

O

15

25

30

35

45

50

55

65

8
return code is set to indicate such fact and a return is
made to the caller in step 278.
FIG. 6 shows the path of steps for handling errors

encountered during POST (step 98-FIG. 2). After an
error has been detected in step 236, POST assembles the
FFDC information and creates error log information in
step 238. Such information is then written by POST in
step 240 directly into the error log directly from POST
without using a BIOS call. In such case, POST per
forms steps similar to those performed by BIOS as ex
plained relative to FIG. 5. Step 242 decides if the error
encountered in step 236 is a critical error. If the error is
not a critical error such that further operations can be
continued perhaps in a degraded fashion, step 244 com
pletes the POST and then loads or boots the OS in
normal fashion. Step 246 then passes control to the OS.
If step 242 determines the error is critical, then step 246
informs the user of such error if it is at all possible.
Obviously, with some errors such as inability to load
dynamic RAM, further operations are impossible and
the user might only see a blank screen on the display.
FIG. 7 shows further details of steps occurring dur

ing POST step 107 (FIG. 2). These steps are done to
cover the circumstance that a critical error may keep
POST step 106 from completing so that the error is
isolated to a FRU. Step 132 begins the POST analysis
by reading error information from the error log into
RAM buffer 131 (FIG. 1). Such reading is done by the
more detailed odd numbered steps 133-145. In step 133,
RAM buffer 131 is allocated a size sufficient to store the
entire error log 88. POST program 40 then stores a
pointer to such buffer in registers ES:DI of micro
processor 12. Next, step 137 sets registers AH=21H
and AL=05H and step 139 makes the BIOS interrupt
call INT 15H. BIOS then performs the next three steps.
First step 141 performs a character redundancy check
on the data from the error log to determine if the data is
valid and sets a return code to indicate the validity of
the data. If the data is valid, step 143 then moves, writes
or copies the data from the error log into buffer 131
where it becomes available to POST program 40. BIOS
then in step 145 sets register BX of microprocessor 12 to
indicate the number of valid entries in error log 88, this
step being done by looking at byte 0, bit 7 of each entry
described above. Following step 145, control is re
turned to POST program 40 step 132.
Upon completion of step 132, step 134 then analyzes

the error log information in buffer 131 and determines if
any error logged therein is so critical that diagnostic
program 122 cannot be run to isolate the FRU from
which the error arose. If it can't, step 136 informs the
user to call for service or identifies what procedure can
be used, to isolate the error. If step 134 results in a
positive determination, step 138 then sets the error log
status byte-bit 5 and runs the diagnostic program to
attempt to isolate the error. Such program does this by
analyzing the error log information to determine the
source of the error and then looking up in VPD 92
VPD information identifying the part number or FRU
for such source. If the error can be isolated to a FRU,
step 147 then passes the VPD to the user so that the
FRU can be replaced in step 149. If the diagnostic pro
gram is not able to isolate the error, step 147 then
branches to step 136.

Referring to FIG. 8, during execution of diagnostic
program 122 in step 168, step 170 determines if there is
any valid entry in the error log. If not, step 172 then
tests a logic area and step 176 determines if an error or

5,245,615
failure occurred during the test. If not, step 178 then
sees if any log entry has been saved by step 174, and if
one has, step 180 informs the user that a temporary
error may have occurred. This procedure detects a
temporary error that resulted in a log entry being made
previously and where the error was not repeated or
found in test 172. Upon completion of step 180, the
normal test is completed. If step 170 results in a positive
determination, step 174 then reads and saves log infor
mation for future reference and branches to step 172. If
step 176 results in a positive determination, step 184
then compares the cause of failure with the log informa
tion saved in step 174. If they compare, step 188 deletes
the resource (e.g. by deleting a block of memory from
which the error arose) and informs the OS. Step 190
then deletes the log entry corresponding to such re
source, builds an OS information log (error log status
byte-bit 6) indicating the deletion and branches to step
182. If step 186 notes an inequality or non-comparison,
a branch is made to step 192 which deletes the resource
if possible, builds an OS information log, and branches
to step 180.

It should be apparent to those skilled in the art that
many changes can be made in the details and arrange
ments of steps and parts without departing from the
scope of the invention as defined in the appended
claims.
What is claimed is:
1. A diagnostic system for a personal computer hav

ing a storage system for storing a plurality of programs
including application programs, an operating system
and a BIOS; and a microprocessor for executing said
programs; said BIOS containing a plurality of routines
which are functionally layered beneath said operating
system and are independent thereof but are accessible
from said operating system by an interface of a plurality
of BIOS interrupt calls; said diagnostic system compris
1ng:

a non-volatile memory having a first address space
for storing an error log, said error log comprising a
plurality of predetermined addressable locations
for storing predetermined error information in a
predetermined format; and

said BIOS including a plurality of diagnostic related
routines including a first routine for writing error
information into said error log and a second routine
for reading error information from said error log,
said first routine being executable in response to a
first BIOS interrupt call, and said second routine
being executable in response to a second BIOS
interrupt call.

2. A diagnostic system in accordance with claim 1
wherein:

said error log comprises a plurality of addressable
locations for storing said error information, said
error information comprising an indication of
source of an error, type of error, and when error
occurred. -

3. A diagnostic system in accordance with claim 2,
wherein:

said error log contains a plurality of entries, each
entry containing error information for a different

5

10

15

20

25

30

35

45

55

60

65

10
error, each entry further containing entry status
information including an indication of whether or
not a given entry is valid.

4. A diagnostic system in accordance with claim 3
wherein said entry status information indicates a perma
nent error and a temporary error.

5. A diagnostic system in accordance with claim 3
wherein said entry includes an extended status field for
storing information specific to a given error, and said
entry includes a plurality of logic status indications
identifying what type of information is stored in said
extended status field.

6. A diagnostic system in accordance with claim 3
wherein said error log further contains a multiple log
counter for counting plural occurrences of same error
condition from same source or different sources.

7. A diagnostic system in accordance with claim 2
wherein:
one of said programs includes an error handling third

routine responsive to an occurrence of an error
during system operation for gathering error infor
nation and assembling such error information in a
buffer in said predetermined format; and

said first routine in said BIOS being operative to
write said error information from said buffer into
said predetermined locations in said error log.

8. A diagnostic system in accordance with claim 7
wherein said third routine is included in said BIOS and
is executed in response to occurrence of a non-maskable
interrupt signal.

9. A diagnostic system in accordance with claim 2
wherein said personal computer has a power-on, self
text (POST) program stored therein for testing said
computer in response to a system restart, said POST
program including a fourth routine for calling said sec
ond routine by executing said second BIOS interrupt
call to read error information from said error log for
analysis by said POST program.

10. A diagnostic system in accordance with claim 9
wherein said POST program includes an error handling
routine operative in response to an error occurring
when POST is executed to collect error information for
such error, assemble such information into said prede
termined format, and write such formatted information
directly in said error log at said predetermined locations
without having to execute said first BIOS interrupt call.

11. A diagnostic system in accordance with claim 2
comprising a diagnostic program executable by said
microprocessor for accessing said error log and testing
operation of said computer.

12. A diagnostic system in accordance with claim 2
wherein:

said non-volatile memory comprises a second address
space for storing vital product data including iden
tifying different field replaceable units in said com
puter;

and said diagnostic system further comprises a rou
tine for reading error information from said error
log and identifying from said vital product data
which field replacement unit to replace when an
error originates therefrom.

s: k

