United States Patent 9

Swarts et al.

LT T]

459839A
Patent Number:
Date of Patent:

[11]
[45]

5,459,839
Oct. 17, 1995

(54]

(751

(73]

[21]
[22]

[63]

[51]
[52]

[58]

[56]

SYSTEM AND METHOD FOR MANAGING
QUEUE READ AND WRITE POINTERS

Inventors: Jeffery L. Swarts, Falls Church; Gary
L. Rouse, Manassas, both of Va.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 293,930

Filed: Aug, 22, 1994

Related U.S. Application Data

Continuation of Ser. No. 755,468, Sep. 5, 1991, abandoned.

Int. CL° GO6F 9/32; GO6F 13/12
US. Cl s 395/650; 395/292; 395/497.01;
395/872; 364/DIG. 1; 364/239.6; 364/244.3;

Field of Search

4,507,760
4,682,284
4,807,111
4,816,996
4,878,166

364/245; 364/245.6; 364/254.5
395/425, 325,
3957275, 725; 364/DIG. 1

References Cited

3/1985
71987
2/1989
3/1989
10/1989

U.S. PATENT DOCUMENTS

365221
.. 395/425

Fraser
Schrofer
Cohen et al. e 395/250
Hill et al. 395/275
Johnson et al. ...cccceveevverrerenenen 395/425

OTHER PUBLICATIONS

IBM TDB, vol. 24, No. 6 to Conroy, entitled “Hardware/
Microcode Support Of Queuing”, Nov. 1981, pp.
2716-2723.

Primary Examiner—Rebecca L. Rudolph

Assistant Examiner—Reginald G. Bragdon

Attorney, Agent, or Firm—TJoseph C. Redmond, Jr.; John D.
Flynn

[57] ABSTRACT

A queue pointer manager contained in an integrated data
controller is capable of controlling high speed data transfers
between a high speed controlled data channel, a local
processor bus and a dedicated local data bus. The overall
design utilizes enhanced features of the Micro Channel
architecture and data buffering to achieve maximum burst
rates of 80 megabytes and to allow communications with 8,
16, 32 and 64 bit Micro Channel devices. Queued demands
allow flexible programming of the Micro Channel master
operations and reporting of completion statuses. The hard-
ware control of command and status queuing functions
increases the processing speed of control operations and
reduces the need for software queuing. Extensive error
checking/reporting, programming parameters, internal wrap
self-test capability give the integrated data controller
advanced functions as an input/output processor. The queue
pointer manager also manages queue read and write point-
ers.

21 Claims, 56 Drawing Sheets

112

139
MASTER EXECUTION
141
ERROA CONTROLLER
143 128
QUEUE MANAGER F—— 2
145 |ITT T T e 1
> P —— . T LOCAL [}
| INTERNAL BUFFERS w Y PROCESSOR |
% , i BUS 1
: T QUEUE READ BUFFER i NTERFACE |
:_ Tworo | : PREFETGH F8 BUFFER al : : :
| CHANNEL I T e T Lre :
| wrerrace !) ADDR/DATA [~
| !] QUEUE WRITE BUFFER +—1 e |
' M [! Y i
le—te| DATA — : 149 Y :
U] iereace [! | outPuT DATA BUFFER r o i
i 181 H ! | 1-PORT I ;
: T !
i 1 ! :
' t L '
: : 1 H 1385
! 2 | | R 1_:4:- o
1 i i 150 ! 1
t t B
] !
! MC d L] OUTRUT DATA BUFFER | i LDB '
=+ ADDRESS |~ : 2-PORT] T DATA |+
1| ~ERPACE [l H L, INTERFACE | 1
! [P !
I 1 |
i ol el 1511 1w |
H !) 1
1
i MC : SLAVE el wpUT H LDB !
V| weeace | | aoDRESS |1 ADDRESS [T ADDRESS [t
(| cowmoL | : GENERATOR | ! BuFFER | INTERFACE |
| mm—m— 1 | L a :
157 ' 155 156 | I
: : LOCAL DATA 1
SELF TEST 1 MC wooar |t BUS :
~—{ INTERFACE T ADDRESS ADDRESS INTERFACE !
sm i GENERATOR eenemaToR || BT omomees
! 1158
! ADDRESS GENERATORS l'

U.S. Patent Oct. .17, 1995

Sheet 1 of 56

100
4

MAINFRAME

PN

101

102

103

FIG. 1

104

5,459,839

106

5,459,839

Sheet 2 of 56

Oct. 17, 1995

U.S. Patent

) WOHd
ozl
(sd1) 3HOILS
(09608 HOSS300Hd
‘981008) vOO1
~ $30IA3a HOSS3IO0Hd
ool H3IH1O0 OUOIN 41 sd1
/s 7 V4
22l 611 12l v
(OIN
/S
mOmwﬂooE it (8d7) SNG HOSS3O0Hd TVOOT HITIOHINOD
2OVIHIINI 3ov4u3iNI [H/a
oll - (ag) sng viva vool i T13SNNVHD
h:\ OHOIN
7 7
cLi 2Ll
S30IA3a $30IA3Q i sai
JOV4H3LNI H3IHLO H3H1O (Sq1) 3HOLS TANNVHO
TYNHIDAE 7 4 OHOIN
- vl v.ivad voo1
Vd
ezl
/s
80}

Sheet 3 of 56

Oct. 17, 1995

U.S. Patent

5,459,839

L I | T
_ _ _ _
| | | “
SE—— U
_ 140d-1 _ _
— "
“ Pl] u3ddnavivaindino | | || SOVHAINI |
_ o evi _ i VYO et
| " | | - O |
| D |
|| sovauaN —t H344N8 ALHM 3N3ND |~ V =i !
=y Vivadaay L vl . | TENwHO
gd1 l 1
| - _ i | ——————— e
I IOV4HILNI “ “ H34d4Ng avad 3N3no " onm
| /
snd _
| hoss3ooHd " | ovi SH34ng TYNEINI |
e - ————— .,
., Vo0 “ syl
e - HIODYNYN 3N3ND
- i Ve 'Ol
- HITIOHLNOD HOHY3
i
NOLLNOIX3 HILSVN B
y ol
eei
Ve
/ "Old
2Lt

€ Oid

5,459,839

Sheet 4 of 56

Oct. 17, 1995

U.S. Patent

At 1
A SHOLYHANZO SS35aav _
est! "
|||||||||| - j | HOLVHANIS HOLVHINIO _ LS
“ 30v4uaINI | +-| SSadaav ssaxaav " FOVAHAINI o
| | o0 ON 1s3lL 4738
| snd | | |
_ viva ool |7 ~ | ~
| | 1osk _ S6i _ si
“ _ _ | “ L
| | _
| 30V4HIALNI . 1| #3448 = | "oivHaNTD |e— _ “IOHLNOD “
AL_I.. ss3yaav ! 1] SS3dHaAQv _ SSIHAQY | " 3OV4HILINI i
| aai “ " 1ndNI - " 3AvIsS | oW |
I , I
7 | |7 | 7 S I
! _ st | psi | vl |
|
I Lt K I _
| 3OVAUILNI “ | ! r~ JOVdHILNI "
-—L+] wiva e 1Hod-e - | SSIAQY |fere
" aa _ [343N VIV LNdLNO [" oW |
_
| o7 _ _ oﬁ\ | e |
| 9El [" | “ zel |
/ | | I |
sel N | _ |

U.S. Patent Oct. 17, 1995 Sheet 5 of 56 5,459,839
FIG.
“ FIG. 4
FIG. 4A FIG.
4B
MICRO CHANNEL BUS
e
+A(0:31)i =— /32 * * e /20 +ADDR/DATA(0:19)i
+APAR(0:3)i /4 o * . /3 ~ +A/D PAR(0:2)i
-APAREN ~— 1 GO5 F11 | n -ALE
+D(0:31)i =—/32—1* F10 " = +RW
+DPAR(0:3)i -——/4 * FO9|e n = -DAV
-DPAREN <———/1 ~ GOS8 FO8 M - +RDY
-ADL <~—/1 ~MO7 E11 M +M/-10
-CD SFDBK <——/1 R14 FO7 |+——/1 ~ .BHE
-SFDBKRTN " ~{N12 D11 [=—11 -LPB ERR
-DS 16 RTN " N11 D15 M — -LPM/SS4_IN
-DS 32 RTN " P11 AD5 /1 ~ -BUS REQ/SS3_OUT
-BE(0:3)i ~——/4 - * C11 [—/1 -BUS GNT/SS3_IN
+MADE 24 =——/1 | RO1 A03[*——/1 -CSEL
-SBHE -) so2 * /4 -INT(0:3)
+M/-I0 " Mo6
-S0,-S1 /2 * LOCAL DATA BUS
-CMD N ~ M09
+CD CHRDY ~—— R11 * /10 +ADDR(0:9)i
+CHRDYRTN n RI2 *|e /2 ~ +APAR(0:1)i
-SDEN n Q13 *[*—— /32— +DATA(0:31)i
-MSDR <———/1 -Q11 * /4 ~ +DPAR(0:3)i
-SDR(0),-SDR(1) =———/2 * G156 " - +RW
-SDSTB Iy MOB *le—/4 > -BE(0:3)i
+ARBI(0:3)i /4 ~* E17 I ~ -RARBO/SS2_OUT

U.S. Patent Oct. 17, 1995 Sheet 6 of 56 5,459,839
+ARBO(0:3)l <—— /4 SN 1 Pu— -RARBI/SS2_IN
+ARB/-GNT M Jo1 D16 M ~ .LDB ERR
-BURST " Ko3 N17 Iy -HALE
-PREEMPT <=——— /1 MO1 Q16l— /1 »~ -ROB
-IRQ(0:3) <~—/4 x
+IRQ_SEL/SS1_OUT <~—— /1 GO3 SELF TEST INTERFACE
-CD SETUP A S01
-CHCK A FO6 * /2 +A/B CLK
+M/-S N NO4 AO1 M +DIN/SS1_IN
+DOJM +——— 1 Qo3 A02 " +MODE
-DLOE A Q05 Cosl——/1 SEL
-NTLBE /1 PO8 CO4 M ~ +DOUT/SS4_OUT
+AO/-| <~ POS5
MISCELLANEOUS
MICRO CHANNEL 119
LOCAL DATA BUS 58 . /2 +8YS CLK
LOCAL PROCESSORBUS 38) SS— +8D CLK
SELF TEST INTERFACE 6 QT | Se— +TEST_C
MISCELLANEOUS 10 . /a +DY+TV/+Cl/+SG
K12le——/1 +SYS RESET
TOTAL SIGNAL I/O 231

FIG. 4B

U.S. Patent

Oct. 17, 1995

Sheet 7 of 56

FIG. 5

5,459,839

MC -—

110

131
4

1707

{_ | INTERFACE

MICRO CHANNEL DATA |

132
Z

MICRO CHANNEL AD

L { | INTERFACE

170~

DRESS

170
/

CAPTURING

LOGIC

SYNCHRONIZING

STATE
MACHINE

DATA
VALIDATION

CONTROL

MICRO CHANNEL INTERFACE /

134

MICRO CHANNEL INTERFACE

130

5,459,839

Sheet 8 of 56

Oct. 17, 1995

U.S. Patent

[4:48

HAND+

o8t

VYAWO +

(oW WoH4)

2l+iL+
| |
Mo Kk
JGH o3y | S8t
1 1va
10
o34 ™~ anNv
98l
iva HoO
SL+IL+
| |
A0~
m“+o” ogy | €8t
1va
) ale)
53" ™~ ANy
1
1va HO

-

ano-

5,459,839

Sheet 9 of 56

Oct. 17, 1995

U.S. Patent

\

rd
c6l

adis+

'
o6l

vHis+

(OW Wou)
ais as

..||||||||..||....||||||||||......sn|....||..||........
_ _
| "
! 2L+ 1L+ |

| |
_ |
|
_ o K !

o m“+o” o3y | 96t _
_ lva “
| 10 _
_ O34 /8_ anv "
_

: wa |- HO _

i —o |

. !

—lll"'lllllll"llll"Il"'ll'llllllll'l'll—

“ _

_

! ZL+IL+ |

| I

_ _
_

A MO~ “
| m“+oﬂ o3y | €6} |
. L1 1va "
| 10 _
| 934 dﬂ anv "
_

_ 1lva HO m
. L)

|
- !

5,459,839

Sheet 10 of 56

Oct. 17, 1995

U.S. Patent

A o190
_ ¥0c| 30003a
JAVIS DN+ - L/ 1va IAVIS
93y (OW Wo44d)
| 1S-/0S- - 2/ iva 2/ -} S-/0S-
W10
7 _ (OW WOH4)
oa ov a+
13s N3 1831 assi+
XNN
/
002
09 HOid

5,459,839

Sheet 11 of 56

Oct. 17, 1995

U.S. Patent

S NIH AQH+

V NiH AGH+
I d/(1e:0)v+

Ca/(le:0)a+

ag oid

'a3L03713s sl (X)V LNdNI vAVA ‘'t = T3S XN IHL NIHM
ANV @310313S si (X8 LNdNI VLY ‘0 = 73S XNW 3HL NSHM

*3NYL S ONIMOTIOAL 3HL S3UNDI4 TV HO4 310N

g+0+
|

/] M10
ivd

(oW Wod4)

lvd

NiH AQd+
(OW Wod4)

)

9e/ iva

O3d

9g/ < (1e:0)V+
(OW wod3)

oe/ iva

cle

oie

g
ia od
oa v

ov

138

XNN

ge/ = (1£:0)a+
(oW wodsd)

aNVN

9 ano-
(OW wodJ)

T lw—agligas

g+

O+
N3 1S3l ass1+

U.S. Patent Oct. 17, 1995 Sheet 12 of 56 5,459,839

230
+D(0:31)P_O ——/36 DAT |— /36— +D(0:31)
REG (TO MC)
+A(0:31)/P_ O —— /36 DAT |— /36— +A(0:31)
MUX CLK (TO MC)
+LSSD_TEST_EN SEL
+C A0
+B AL DO
' D1
+MASTER_RDY — BO 220
. AND |- ;
+MC_MASTER lo_ OR [gy /
+SLAVE_RDY AND —I-
O—.
L 222
XOR DAT NOF
REG | | XNOR [~ DAT
(FROM MC) CLK 225
Y/
+RDY RTN — gf;
(FROM MC) OR
+64 SD_EN —
224
4
MUX
LSSD_TEST_EN SEL
+C , —1 A0
+B Al DO}
-SD_STB —::)-_ BO D1
(FROM MC) At /226
MUX
LSSD_TEST_EN - SEL
+C A0
+B AL DO
-SD_STB BO Di
(FROM MC) l——-o— B1

5,459,839

Sheet 13 of 56

Oct. 17, 1995

U.S. Patent

Z
- 8 31VIS
N
M - A
v ALVIS 1 A
ATV
P H
d d 1
€ 31VIS I 31VIS n
S 31V1S 9 J1VIS
y O j
1]
||||| N -1 0 3LVIS 3
|
l Old “ v
|

T San e vt e S —— oy ——— — ———— o — ————— - —— W — — o — — — o —_ w——

5,459,839

Sheet 14 of 56

Oct. 17, 1995

U.S. Patent

AQH+

Ava-

] I L)
W ia 1d vV VY
L1 1

T T
0d 0 ov ov
I l

vivaniaav

1NOSNg-

O34 snga-

UM-/QY+

Ol-/IN+

Iv-

WdT-

T e e e W e e e M A e G M e R e e e e s e e e e e = = e W W e Ak = n e v M e e e mw dm e em e

X 1380

434
ZHIN ST

U.S. Patent Oct. 17, 1995 Sheet 15 of 56 5,459,839

FIG. 9

CSEL x m
— o . o e
B
m

ALE e T I B N M

MO T e e M

+RDIMWR ——— T o tttTr e M

-BUS REQ] | M

.BUSGNT — 1 I I N I I - A

1 1 I
ADDR/DATA Ao A0| [Do,po| [A1, A1 [D1,D1}— M

MIC CAPTURED DATAON_, : : DATA CAPTURED AGAIN
RISING EDGE OF CLK oo IF RDT STILL ACTIVE

5,459,839

Sheet 16 of 56

Oct. 17, 1995

U.S. Patent

SIW 0a, 0 E

e e em e o e as MR e o m M SR N MR W R R e M G ML W AT AR M M e e o e W e

“n am e W e e e = e ek R R W Ak a i e Wm e M em em Ee e E Ee m e M e o e e e o

Ol 9l

AQH+

AVa-

viva/daavy

HM-/QY+

Ol-/W+

Ell A

Nd1-

5,459,839

Sheet 17 of 56

Oct. 17, 1995

U.S. Patent

S _ _ ‘
NVO
HOIH 09 NvO N a Soai
AVA 1S3V A._I -
|
IIIIIIIIIIIIIIII | e
viva 3HNLdVD
ainod JIN S3IAOAI X110 =
ﬁ-u-. T 1] rr
)| on__” 0g 0Q oda o<_” ov
LLL 1 LL
OIN A9 A3HUNLdVYO Sl TAIND/HYAAVY 3903 X110 - -
4|
||||||||||||||||||||||||| L o e e -
W
IIIIIIIIIIIIIIIIIIIIIII e e e = — — —— — — o~
N 1 | O —————
Ll ©Old N— Y
W

AQY+

AvQ-

vivaQrdaaav

HM-/QH+

Ol-/N+

Iv-
Wd1-

1
Z 1380~
H

43y
ZHW S¢

5,459,839

Sheet 18 of 56

Oct. 17, 1995

U.S. Patent

e / 8ve /
N\
ovz / ()4¥3 8

Y Y

_ ()goH (aod
_ NG+ z | AS+ F

() oguvy dIHO (1)1g4yvy (1)oguvy diHO | (7)iguvy
d N&\ H \
| | ore
NS+ NG+
¢k Ol

5,459,839

Sheet 19 of 56

Oct. 17, 1995

U.S. Patent

1444
AN

2144
- AN

o AN
S \ (uy3"gan
y ove y
_ (Ngoy (Ngox (naod
dall N R B bl L L
(Noauvd | dIHO diHO | (Mguvd | (Noguvy dHO | (Migyvy
N \ \
d 2ve d
0s2 ove
AS+ | AS+
€L Oid

U.S. Patent Oct. 17, 1995 Sheet 20 of 56 5,459,839
SYSRESET
FROM ANY
STATE “STARTUP NXTST 1B
']
STATEO STARTUP STATE1 -
RING DOWN IDLE
- (RD) . SHUTDWN! (D)
TRT_EXP
STATRPT TOKDET
SHUTDWNZ
'
STATES3 2ND TOK STATE2 -
ERROR - TOKEN
DETECT (ED) MASTER (TM)
TOKREL
A
STATRPT NXTST 2B
SHUTDWN1 = ERRIN & ERRIN_D1 & TRT_EXP
SHUTDWN2 = ERRIN & ERRIN_D1 & 2NDTOK
ERRRPT = ERROR REPORTED
STARTUP = ERRIN & ERRIN_D1 & TOKOUT
NXTST LB = SHUTDWN1 & TOKDET & THT_EXP
TOKREL = TOKOUT & SHUTDWN2 & 2ND TOK
TOKDET = TOKIN & SHUTDWN1 & THT_EXP
NXTST 2B = SHUTDWN2 & TOKREL & 2NDTOK
TRT_EXP = TOKEN HOLD TIMER EXPIRED
oNDTOK = TOKIN

U.S. Patent

Oct. 17, 1995

Sheet 21 of 56

5,459,839

ACTIVATE_ERR(L)

LDB
INTERFACE _
i e |
' :
I - RARBI(L
| TOKIN(L) REG REC : (8
|
I-o— |
i OKEN(H) o] 0 L°'|_O_ !
| TAKE_TOKEN(H) DRV |— = RARBO(L)
: OR REG i
! INJ_TOKEN(L) o T
- I
| TokouT(w) |
I
|
i
i
| ROBINQ) FEG REGC |
|
' :
|
' L oc | . DB ROB(L)
l B |
I
| ACTIVATE_ROB(L) T |
| REG |
| |
| l
' :
|
| ERRIN_D2(L) rea F rea F rea REC [+ |
|
| |
' :
| ERRIN_D1(L) L1 oc LDB_ERR(L)
| ERRIN(L
! © it
!
|
{
i
|

- —. o — W Wnn o v e Gae G o W e Gl wm — LA L e S — A W e e as ——

U.S. Patent Oct. 17, 1995 Sheet 22 of 56 5,459,839

FIG. 15A-2

REC = RECEIVER, REG = REGISTER,
OC = OPEN COLLECTOR DRIVER, DRV = DRIVER

INJ_TOKEN(L) = [STATEO & RING_MASTER & ERRIN & ERRIN_D1 & .
TOKOUT + [STATE2 & TOKIN & RELOWN]

TAKE_TOKEN(H) = [STATE1 & REQBUS & TOKDET] = [STATE1 &
' TRT_EXP] + STATE2 & STATE3 + SYSRESET +
[STATEO & (ERRIN + ERRIN_D1 + ERRIN_D2)]

ACTIVATE_ROB(L) = REQBUS & [(STATE1 & TOKIN) +
(STATE2 & TOKOUT)]

ACTIVATE_ERR(L) = STATE3 + (STATE1 & TRT-EXP) +

(STATE2 & 2NDTOK)

RELOWN = RELEASE OWNERSHIP = STATE2 & TOKOUT &
(THT_EXP + REQBUS)

RELOWN = RELEASE OWNERSHIP

RPE = RING PARTICIPATE ENABLE

REQBUS = INTERNAL CHIP REQUEST TO USE BUS

RING_MASTER = INITIALIZATION REGISTER THAT TELLS
DEVICE TO START RING IF IT WAS DOWN.

U.S. Patent Oct. 17, 1995 Sheet 23 of 56 5,459,839

MUXSEL(0O)MSB ————— F|G_ 15B
MUXSEL(1)LSB ‘
INITIAL THT — INV 10
INITIAL TRT —1 INV 01 CURRENTCNT
REG
MUX
00
11

L
DOZ —

AND +RPE
—O -ROB

+CNTEXP

-TOKIN —O OR MUXSEL(0)MSB

(STATE2 & CNTEXP & TOKOUT) +
(STATE1 & TOKIN & ROBIN) +
(STATE2 & TOKOUT & ROBIN)

MUXSEL(1)LSB

OR

-TOKOUT —OH

5,459,839

Sheet 24 of 56

Oct. 17, 1995

U.S. Patent

- (VM3 g9an
(1)goy aan
|) SO sNa viva aa1
[ﬁ q 4] H
._. |_. ._. ._. ._ SSINOV MM OIN SNg sS3xAAv 8a
1 ‘| J18ISSOd (Moguvy A3a
1 [(INMOL A3
1 [1 1 (Toguvy JIW
1 1 (DNIMOL OIW

‘ [(H)Y3LSYWONIY OIN
cQi:ai-al: ar:al:diiaieial: areaay gy iayiad: HOVINLS ONIY A3d
m_‘ .mv_ 4 ! “.o_“.o_ o_ AN :,_ E LN .:>_ o_ ar: o_.“om ay: HOVINLS ONIY DIN

U.S. Patent Oct. 17, 1995 Sheet 25 of 56 5,459,839

FIG. 17

A e e i ipigigigigigigigigigigig NNy
REF .
- I I I l l : .

DEV1RARBWL) ™ 1__[7OKENSENTTODEV1] | | | |

DEV2 RARBO(L)

o TOKEN SENT TO DEV 2 - .
+RDIWR 5 DEVICE 1 [DEVICE 2

L I O S I
HALE(L) DEVICE 1 L DEVICEZ
BE(O3)L) — DEVICE 1 [DEVICE 2

| | I_LI |
LDB ADDR(0:9) —— 1 DEVICE 1 [DEVICE 2
LDB DATA(0:31) DEVICE 1 [DEVICE 2
|c1 |c2les C4|
- C1 (CYCLE 1)
_DEFINED BY DEVICE 1 PASSING THE TOKEN ON TO THE NEXT

DEVICE
- LAST CYCLE DEVICE 1 CAN DRIVE HALE, R/-W, AND

ADDR (0:9) (NOTE: HALE IS DRIVEN INACTIVE TO PREPARE

FOR RELEASE.)

-C2 (CYCLE 2)
- LAST CYCLE DEVICE 1 CAN DRIVE OR HAVE LDS DRIVE
DATA(0:31)
-C3 (CYCLE 3)
- 1ST CYCLE DEVICE 2 CAN DRIVE ADDR(0:9) , HALE, AND
RI-W
-C4 (CYCLE 4)

- 1ST CYCLE DEVICE 2 CAN DRIVE DATA(0:31) AND BE(0:3)

U.S. Patent

Oct. 17, 1995

FIG. 18

Sheet 26 of 56

5,459,839

MMz PP L
REF

RARBI(L)
RARBO(L)

H
+RDIWR Z

L
HALE(L)
BE(0:3)(L)

MIC'S RD

LDB ADDR(0:9)
LDB DATA(0:31)

EARLIEST FOR NEXT DEVICES DATA

ADDR _,

HA1|LA1|LA2 |[HA3

LA3| LA4

LAS

Ly
Fli]

MIC'S RD DATA —>
D1| D2

XXX

D3

D4

D5

[o47)

EARLIEST FOR NEXT DEVICES DATA—r

HA IS DEFINED AS LDB HIGH ADDRESS
LA IS DEFINED AS LDB LOW ADDRESS

U.S. Patent Oct. 17, 1995 Sheet 27 of 56 5,459,839

FIG. 19

25MHz M MM

REF

RARBIL) = —— °
RARBO(L) | —
| -

+RDI-WR 'Z*
L

HALE(L) " [

BE(O:3L) " I T ,
MICSWRADDR NEXT DEVICES ADDR -

LDB ADDR(0:9) HA1|LA1(LAZHA3[LAS | LaglLas| Hhadia [][

MIC'S WR Ao_:_lm:
LDB DATA(O:31) D1 | p2xxx|D3{D4 |D5 ——{pAT

r

EARLIEST FOR NEXT DEVICES DATA

HA IS DEFINED AS LDB HIGH ADDRESS
LA IS DEFINED AS LDB LOW ADDRESS

THE SIGNALS ABOVE REPRESENT THE LDB INTERFACE AT THE MIC'S
I/0 PINS.

U.S. Patent Oct. 17, 1995 Sheet 28 of 56 5,459,839

FIG. 20

REF S e e

RARBI(L) -1
RAROI(L) , 1
+RD/-WR | [
HALE(L) —-°"""77 —1oC
BE(0:3)(L) L
MIC'S WR ADDR NEXT DEVICES ADDR
LDB ADDR(0:9) Al a2 rAd LA LAdHAS LAS —ﬁ
MIC'S RD DATA
—
LDB DATA(0:31) p1[p2 I—{b3[ps D5

MIC'S WR ADDR MIC'S RD DATA
EARLIEST FOR NEXT DEVICES DATA

HA IS DEFINED AS LDB HIGH ADDRESS
LA IS DEFINED AS LDB LOW ADDRESS

THE SIGNALS ABOVE REPRESENT THE LDB INTERFACE AT THE
MIC'S I/0 PINS.

U.S. Patent Oct. 17, 1995 Sheet 29 of 56 5,459,839
QUEUE ENTRY (JOB)
PENDING IN Q#D 300
FIG. 21 | V4
FETCH MCW IN Q#D 4 BYTES
- 301
/
FETCH MCB IN LPB MEMORY 16 BYTES
{WAT 302
FLAG CHECKS 4
NOP READ FB FROM
BUF S
‘ MC I/O ADDR
FETCH FREE BLOCK FSB 4BYTES
- N\
FMT 303 304
' an ~—=MC
DATA MOVE DEFINED BY
(64K BYTES MAX) OPE FLAG
305
| PST v
8 BYTES
POST MPC TO REMOTE MIC Q# = MPC
MC QUEUE WRITE OPERATION QID IN MCB
PCI 306
y
8 BYTES
POST MSW TO LPB QUEUE Q# = SID
LPB QUEUE WRITE OPERATION | N Mcw
- " 307
CHAIN OR JUMP?
0o l MCW
COMPLETE

5,459,839

Sheet 30 of 56

Oct. 17, 1995

U.S. Patent

HLON31 00714

(dS7) SS3HAAY 139YV1

vie

(BSW) SS3HAAQY L3DHVL

pd

0|ojo|oj0jO(0|0| OVId41VIS/ANWD

(8s7) sS3daav IDHNOS

(8SW) Ss3Haav 304NOS

aid OdW|0 [Haav O/1 1410 A3Q O

©34d 84 OIN 310W3Y

q

001 10:4aav O/ 1410 A3a DN
= HAaav O/1 184 O

f

WavY ([0|10]0(M|d|g|d N[Ol]|d|3dO

e (OW) M0018 TOHLNOD OIW
2ie »

0000:SS3HAAY 841 OW
= "aav gd1 aOn

t

Vée Dl

SS3HAAV 9471 90N

\ dl 30IA=a aid | aiod

oLe (MOW) aHOM ANYIWINOD OIN

»

00-H3LNIOdD: 104 1:D3SD
= HAAVv 9471 MOW

5,459,839

Sheet 31 of 56

Oct. 17, 1995

U.S. Patent

dcce Dld

¢¢ Oid

gdcc 'Old

vée 'old

H1IONITIN00E SS3HAAY 8471 80N
(8S7) SS3HAAY 139HVL olojolofo|o|ojo|ol|ofojol0 0
9SO HAAv 1394vL | ©v1d LV1S/QND OH WSXW|4 (0|0 [0 | LV.LS WSXI 0
al 30IA3A ald | "av Aaa al 30I1A3a ad | !
(DdW) ONVYINWOD LSOd T3INNVHO OHOIN (MSW) QHOM SNLYLS OIN WB

]

aio OdW = WNN D 30IA3A 31ON3H Od
00010:4AAv O/ D0V D A3d OW
= HAaav o/l OW OdW

|

-@IS'D3SO = HAav gd1 MSHN

f

00:d31NIOdD

U.S. Patent Oct. 17, 1995 Sheet 32 of 56 5,459,839

MSB LSB

IBM 0|1|2|345678911121115

VEN |15|14 |13 121110 |9 |8 |7|6 |5 |4 |3| 2|1 |0
WORD 0{ RETURN Q ID | REFERENCE ID DEVICE ID LSB
WORD 1 MIC CONTROL BLOCK ADDRESS MSB

WORD BITS NAME: DESCRIPTION

0 0-31 |RETURN QUEUE IDENTIFICATION (RQID) NUMBER:
15-12V INDICATES THE QUEUE NUMBER WHICH THE MIC
WILL RETURN THE MSW TO AT THE END OF THE
COMMAND TRANSFER.

0 4-7 | [|REFERENCE IDENTIFICATION (RID) NUMBER:

1-8V SOFTWARE POINTER TO REFERENCE THE MCW
WITH THE MSW & MPC.

NOTE: THIS FIELD HAS NO RELEVANCE TO MI
OPERATIONS AND CAN BE REDEFINED AND USED
BY SOFTWARE.

0 8-15 | | DEVICE IDENTIFICATION (DID) NUMBER:

70 V SOFTWARE POINTER OR DEVICE REFERENCE

FIELD.

NOTE: THIS FIELD HAS NO RELEVANCE TO MIC
OPERATIONS AND CAN BE REDEFINED AND
USED BY SOFTWARE.

1 0-151 | MIC CONTROL BLOCK ADDRESS (MCB ADDR):

15-0 V THE UPPER 16-BITS OF THE LPB MEMORY ADDRESS
WHERE THE MCB OR FIRST MCB IN A CHAIN CAN BE
FOUND. THE STARTING MCB ADDRESS IS
GENERATED BY THE FOLLOWING; MCB LPB ADDRESS
= MCB ADDRESS: 0000

U.S. Patent Oct. 17, 1995 Sheet 33 of 56 5,459,839

FIG. 24

MSB LSB

IBM oI1|234 5'6'7 8 9|1o11 12|13|14 |15
VEN | 15|14|13]12|11|10| 9| 8| 7| 6| 5| 4] 3 2| 1] O
WORD 0 OPE |PCI JMPCHN'\IOF‘FM BUF PSTMAT of o] of ABM |LSB

WORD 1 MIC DEVICE QUEUE CONTROL /O ADDRESS | 0 | MPC QUEUE ID
WORD2 | SOURCE ADDRESS (MSB)
WORD3 | SOURCE ADDRESS (LSB) olo|lo| ofl ofoflofo

WORD 4 COMMAND/STATUS FLAGS
WORD & TARGET ADDRESS (MSB)

WORD 6 TARGET ADDRESS (LSB)
WORD 7 BLOCK LENGTH MSB

WORD| BITS NAME: DESCRIPTION

0 0-2I OPERATION (OPE):
15-13V THIS FIELD DEFINES THE DATA MOVEMENT DURING THE
COMMANDED TRANSFER.

000 = LDB TO MICRO CHANNEL 1/0 ADDRESS SPACE.

001 = LDB TO MICRO CHANNEL MEMORY ADDRESS SPACE.
010 = MICRO CHANNEL /O ADDRESS SPACE TO LDB.

011 = MICRO CHANNEL MEMORY ADDRESS SPACE TO LDB.
1XX = LDB TO LDB, WRAP OPERATION.

NOTE: THE CEN FIELD IN POS REGISTER 2 MUST BE DISABLED
WHEN OPE = "1XX', LDB TO LDB WRAP OPERATION.

CEN MUST BE ENABLED WHEN OPE = '0XX'.

0 31 PROGRAM CONTROLLED INTERRUPT (PCl):
12v 0 = THE MIC WILL NOT POST A MSW TO A QUEUE AT THE
END OF THE COMMANDED TRANSFER UNLESS
THERE WAS AN ERROR.

1 = THE MIC WILL BUILD AND POST A MSW TO THE
QUEUE NUMBER DEFINED IN THE RQID AT THE END

OF THE COMMANDED XFER.

U.S. Patent Oct. 17, 1995 Sheet 34 of 56
FIG. 25
WORD BITS NAME: DESCRIPTION
0 41 JUMP (JMP):
11V 0 = NO JUMP.
1 = THE MIC WILL USE THE LEAST SIGNIFICANT
16-BITS OF THE SOURCE ADDRESS FIELD
IN FORMING THE ADDRESS OF THE NEXT MCB.
0 51 CHAIN (CHN):
10V 0 = NO CHAINING.
1 = THE ADDRESS OF THE NEXT MCB IS EQUAL
TO THE CURRENT STARTING MCB ADDRESS
PLUS 16 BYTES.
0 61 NO OPERATION (NOP):
oV 0 = NO NO-OP
1 = MIC WILL ONLY PROCESS THE PCI FLAG.
NO ACTUAL DATA OR COMMANDED TRANS-
FER WILL OCCUR.
0 71 FORMAT (FMT):
8V THIS BIT INDICATES WHETHER DATA MOVEMENT
DURING THE COMMANDED TRANSFER WILL OCCUR.
0 = DURING A DATA BLOCK MOVE OPERATION THE
DESTINATION ADDRESS IS SPECIFIED BY THE
TARGET ADDRESS.
1 = DURING A DATA BLOCK MOVE OPERATION THE
DESTINATION ADDRESS IS READ FROM THE FREE
BLOCK LIST POINTED TO BY THE MC DEVICE
QUEUE CONTROL ADDRESS.
o X FREE BLOCK REQUEST (BUF):
7V 0 = DURING A DATA BLOCK MOVE OPERATION
THE DESTINATION ADDRESS IS SPECIFIED BY
THE TARGET ADDRESS.
1 = DURING A DATA BLOCK MOVE OPERATION
THE DESTINATION ADDRESS IS READ FROM
THE FREE BLOCK LIST POINTED TO BY THE
MC DEVICE QUEUE CONTROL ADDRESS.
0 9 I POST COMMAND / STATUS REQUEST (PST):
6V 0 = NO MPC WILL BE SENT TO A MC DEVICE AFTER THE

COMPLETION OF THE COMMANDED TRANSFER.

1 = AMPC WILL BE BUILT AND SENT TO THE QUEUE
DEFINED IN MPC QUEUE ID FIELD TO THE ADDRESS
DEFINED BY THE MC DEVICE QUEUE CONTROL
ADDRESS AFTER THE COMPLETION OF THE
COMMANDED TRANSFER.

5,459,839

U.S. Patent Oct. 17, 1995 Sheet 35 of 56 5,459,839

FIG. 26

WORD BITS NAME: DESCRIPTION

0 101 WAIT (WAT)

5V 0 = THE MIC WILL PROCESS THE MCB IMMEDIATELY AND
WILL CONTINUE TO READ THE REMAINING WORDS
OF THE MCB.
1 = THE MCI WILL NOT PROCESS THE MCB AND WILL
CONTINUE TO REREAD MCB WORD 0 UNTIL WAT=0.
NOTE: THE MIC WILL REREAD MCB WORD 0
APPROXIMATELY EVERY 256 CLOCK CYCLES
(10.24 JSEC), AUTOMATICALLY.

0 11-131 RESERVED AT A VALUE OF '0".
4- 2V

0 14-151 ADDRESS BURST MANAGEMENT (ABM)

i- 0V THIS FIELD DEFINES THE ABM SIZE USED FOR THE
COMMANDED TRANSFER WRITES. THESE BITS OVERRIDE
THE ABM FIELD DEFINED IN THE MC POS REGISTER

4 SUB-ADDRESS 0000.

00 = ABM DEFINED IN THE POS REGISTER (DEFAULT)

01 = 16 BYTE ADDRESS BOUNDARY.

10 = 32 BYTE ADDRESS BOUNDARY.

11 = 64 BYTE ADDRESS BOUNDARY.

NOTE: THIS FIELD IS ONLY VALID WHEN OPE=00X.

1 o-111 MC DEVICE QUEUE CONTROL |/O ADDRESS:

15- 4V THIS FIELD DEFINES THE STARTING MC I/O ADDRESS
LOCATION WHERE THE MIC CAN ACCESS CONTROL
REGISTERS NECESSARY TO COMPLETE A QUEUE OR
FREE BLOCK FETCH OPERATION. THESE CONTROL
REGISTER SHOULD HAVE THE SAME FORMAT AS THE
MIC'S I/O CONTROL REGISTERS (QRC, QWC, QD, AND
FB REGISTERS) AND SHOULD BE LOCATED AT THE
FOLLOWING ADDRESS OFFSETS;

QRCR = 0000, QWCR = 0100, QDR = 1000, FBR =1100.

1 12-151 MICRO CHANNEL POST COMMAND QUEUE ID (MPC QID):
3-0V THIS FIELD DEFINES THE QUEUE NUMBER ON ANOTHER

MC DEVICE WHERE THE MPC CAN BE POSTED TO.
THE RECEIVING QUEUE'S BYTE COUNT IS 8 BYTES.

2 0151 | SOURCE ADDRESS (MSB):
THE HIGH ORDER ADDRESS BITS USED TO SOURCE

DATA WHICH WILL BE MOVED DURING THE COMMANDED
TRANSFER. FMT MUST EQUAL '0’, TO USE THIS FIELD.

U.S. Patent Oct. 17, 1995 Sheet 36 of 56 5,459,839

FIG. 27

WORD BITS NAME: DESCRIPTION

3 0-151 SOURCE ADDRESS (LSB): |
150V THE LOW ORDER ADDRESS BITS USED TO SOURCE DATA
WHICH WILL BE MOVED DURING THE COMMANDED
TRANSFER. ALSO, THESE BITS DEFINE THE MCB LPB
ADDRESS WHEN JMP="1".

4 0-71 COMMAND / STATUS FLAGS:

15-8V FLAGS USED FOR COMMAND / STATUS TRANSFERS.
THIS WORD SPECIFIES NO MIC FUNCTION AND CAN BE
USED FOR SOFTWARE DEFINED FUNCTIONS AND FLAGS.
4 8-151 RESERVED AT A VALUE OF '0’.
70V
5 0-151 TARGET ADDRESS (MSB):
150V THE HIGH ORDER ADDRESS BITS USED TO TARGET

DATA WHICH WILL BE MOVED DURING THE COMMANDED
TRANSFER. NOTE: THE MPC DOES NOT USE THE

8 MSB OF THIS FIELD.
6 0-151 TARGET ADDRESS (LSB):
150V THE LOW ORDER ADDRESS BITS USED TO TARGET
DATA WHICH WILL BE MOVED DURING COMMANDED
TRANSFER.
7 0-151 BLOCK LENGTH:
150V THE NUMBER OF BYTES WHICH WILL BE MOVED

DURING THE COMMANDED TRANSFER.

U.S. Patent Oct. 17, 1995 Sheet 37 of 56 5,459,839

FIG. 28

COMMANDED OPERATION |OPE| PCI | JMP{CHN | NOP| FMT | BUF | PST | WAT|

LDB TO MC 1/O ADDR ocoof X | O X]|]O0 0 0 0| X

LDB TO MC MEMORY ADDR | 001 | X 0 X 0 0 0 X1 X

001 | X 0 X o 0 1 1 X

MC I/O ADDR TO LDB o0 X | O X|o 0 0 0| X

MC MEMORY ADDRTOLDB | 011 | X 0 X1tlo 0 0 o} X

LDB TO LDB WRAP x| xlo] xlo]lo] of ofX
POSTING ONLY oxx| X | | | o 1 o| 1| X
NOP x| x | x| * | 1 x| x| o} x
JMP CHN
* _ VALID CHAIN AND JUMP olo| LASTMCB
?h?sag QSEEDEF'NED IN 0|1 | MCB=MCB+16
- 1/0| MCB=SRCADDR
111 ILLEGAL

U.S. Patent Oct. 17, 1995 Sheet 38 of 56 5,459,839

FIG. 29A
MSB ‘ LSB
BM | 0] 1] 2| 3 4,5,6,7 8 91o|11 12,13'14'15
VEN | 15114113{12|111j1019 1817 | 61 5] 4] 31 2] 1|l o
WORD 0O 111 10| 1 | REFERENCEID DEVICE ID LSB
WORD 1 0oj0] O MXSM STATE 0{0]| 0 |FBR MXSM RC
WORD2 | 0jO0o|jo}lo]Jo)Jo]Jojojolololojojololo
WORD 3 MIC CONTROL BLOCK ADDRESS MSB

WORD BITS NAME: DESCRIPTION

0 0- 31 THESE BITS DEFINE THE SOURCE QUEUE NUMBER OF THE
15-12V MSW, WHICH FOR THE MIC IS QUEUE # D ('1101’)
0 4- 71 REFERENCE IDENTIFICATION (RID) NUMBER:
11- 8V SOFTWARE POINTER TO REFERENCE THE MCW WITH
THE MSW.
0 8-151 DEVICE IDENTIFICATION (DID) NUMBER:
7- 0V SOFTWARE POINTER TO REFERENCE THE MCW WITH
THE MSW.
1 0- 21 RESERVED AT A VALUE OF ‘0.
15-13V
1 3- 71 MASTER EXECUTION STATE MACHINE STATE:
12- 8V THIS FIELD DEFINES THE STATE WHICH THE MASTER

EXECUTION UNIT WAS IN AT THE END OF THE
COMMANDED TRANSFER. IF NO ERROR OCCURRED
THEN MXSM STATE = '00000".

1 8-101 RESERVED AT A VALUE OF 'O
78V
1 111 FREE BLOCK RETURN (FBR):
4V THIS INDICATES THAT AN ERROR HAS OCCURRED WHICH

REQUIRED THE MIC TO RETURN A FETCHED FREE BLOCK
FROM ANOTHER MC DEVICE. IF MCB FIELD BUF="0’
. THEN THIS FIELD IS INVALID,
0 = THE MIC WAS UNSUCCESSFUL IN RETURNING THE FB
TO THE MC DEVICE IT WAS FETCHED FROM.
1 = THE MIC WAS SUCCESSFUL IN RETURNING THE FB
TO THE MC DEVICE IT WAS FETCHED FROM.

U.S. Patent Oct. 17, 1995 Sheet 39 of 56 5,459,839

1 | 12151 | MASTEREXECUTION STATE MACHINE RETURN CODE:
3.0V THIS FIELD INDICATES THE COMPLETION STATUS
OF THE COMMANDED TRANSFER OPERATION. *
2 | o151 | RESERVED ATAVALUE OF 0.
150V
3 | o151 | MCBADDRESS:
150V THE UPPER 16-BITS OF THE LPS MEMORY ADDRESS
WHERE THE MCB OR LAST MCB WAS USED FOR THE
COMMANDED TRANSFER.
FiG. FIG. 29B
Fic. G. 29
— FIG. 29
298

U.S. Patent Oct. 17, 1995 Sheet 40 of 56 5,459,839

MSB LSB
IBM | O l 1 I 2, 3 4| 5l 6|7 8| 9|10|11|12|13|14|15
VEN [(15]14|13}12|11|10) 9|8 |71 6| 5| 4| 3| 2| 1| 0
WORD 0O MC SOURCE ID | REFERENCE ID DEVICE ID LSB
WORD 1 COMMAND/STATUS FLAGS TARGET ADDRESS (MSB)
WORD 2 TARGET ADDRESS (L.SB) FER
WORD 3 BLOCK LENGTH MSB
WORD BITS NAME: DESCRIPTION
0 0-31 MC SOURCE ID/DEVICE ADDRESS:
15-12V THESE BITS DEFINE THE MICS MICRO CHANNEL DEVICE
ADDRESS. THESE BiTS ARE EQUAL TO THE POS REQ2
DEVICE ADDR FIELD.
0 4-7 | REFERENCE IDENTIFICATION (RID) NUMBER:
11-8V SOFTWARE POINTER TO REFERENCE THE MCW WITH
THE MSW.
0 8-151 DEVICE IDENTIFICATION (DID) NUMBER:
7-0V SOFTWARE DEFINABLE.
0 0-7! COMMAND/STATUS FLAGS:
158V FLAGS USED FOR COMMAND / STATUS TRANSFERS. THIS
WORD SPECIFIES NO MIC FUNCTION AND CAN BE USED
FOR SOFTWARE DEFINED FUNCTIONS AND FLAGS.
1 8151 TARGET ADDRESS:
70V THESE BITS DEFINE THE LOWER 24BITS OF MC MEM)
2 0-14 1 ADDR WHERE THE MIC MOVED DATA TO. THIS ADDRESS
15-1V FIELD IS EITHER THE TARGET ADDRESS DEFINED IN THE
MCB OR THE FB ADDRESS FETCHED FROM THE MC
DEVICE, DEPENDING ON THE MCB BUF FIELD
2 151 FREE BLOCK ERROR (FER):
oV THIS FIELD DEFINES WHETHER THE TARGET ADDRESS
WAS REALLY USED AS THE TARGET ADDRESS. ONLY
VALID IF BUF="1".
0 = TARGET ADDRESS VALID.
1 = TARGET ADDRESS BEING RETURNED, UNUSED
ADDRESS. COMMANDED TRANSFER CONTAINED AN
ERROR AND THE FREE BLOCK IS BEING RETURNED.
3 0-151 BLOCK LENGTH:
15-0V THE NUMBER OF BYTES WHICH WERE MOVED DURING
A COMPLETED CT OR WERE SUPPOSED TO BE MOVED
FOR THE CT.

5,459,839

Sheet 41 of 56

Oct. 17, 1995

U.S. Patent

SS3¥AAv 9an
|

PLLLLLLL © BLLLLLLL C bLLL
(XYW) S3LALG WL

mooooooo“oooooooo“ooom

!
135340

N3A
Wdl

PLLLLLLL-LLLLLLLL-LELLLLLLREELRLL L LLLLLL L L <

ORLBLLEL-LLLLLLLLBERELLLL LR RRRRELLLLLLLLL

Sat

FRLLLLLLLLLLLLLE- L L HE Y - HHHE Y

sani

._.mwu_uﬂ_O S31A9O ¥]

sdai

H_uooooooo”oooooooo“ooomw_mmm”m_mmmmm_mm_

_
934 SS3AAV 3SvE AHOWIN OW 841

10000000-00000000 -00000000 -00000000

00000000-00000000 -00000000 -00000000 <

o_r_m‘m_c m_m_N
Llolsly lelzli|o

SSTHAAY AHOWIW OW

Le Ol

5,459,839

Sheet 42 of 56

Oct. 17, 1995

U.S. Patent

SS3qHAAv m_nj

©3d 93S 00V 801

LLLLLLLL CLLLLMMNY NNy MOCGNIM SaT

S3ALAB AV MOGNIM Sa1

00000000-0000¥HH-HHHY [MOGNIM ST
138440

O34 O3S SS30IV 8071

N3A
W4l

Ol|L|C|E|P|9|9(L
L|9|G|v |E|C|L]|0

BELLLLLL S LLLELLLL S LLLL <
OLLLLLLL = LLLLLLLL © LELL

10000000°00001L000:XXXX

34VvO LNOQd
L
00000000:00001L000-XXXX
LLLELELLS BLLLO000 -XXXX
S31A9 NI —
oooooooo oooooooo XXXX

_.I_L

Em“_“_o 93S g8d1
10000000:00000000 00000000 :00000000

oooooooo 00000000 -:00000000 oooooooo -
SS3daav >mO_2w_>_ mn_.._

¢¢ Old

U.S. Patent Oct. 17, 1995 Sheet 43 of 56 5,459,839
0|1|2|3|4|5|6|7 IBM
LPB MEMORY ADDRESS 716l51al3l211]0 IVEN
—» 0000:00000000:00000000
0000:00000000:00000010
QIR BYTE
QIR SEG Q# -

y NN QUEUE 0 -
XXXX:00010001:00000000 . INTIALIZATION :
XXXX:00010001:00000011 REGISTER
XXXX:00010001:00000111 'N',,-I,'E%,'gﬁgf N ' 4 BYTES

___ 1MBYTES
64 BYTES —
XXXX:00010001:00111000 QUEUEE
XXXX:00010001:00111011 'Ng,'fé‘,'gg:f N
XXXX:00010001:00111100 QUEUE F
: INITIALIZATION :
XXXX:00010001:00111111 REGISTER -

-
DON'T CARE
1111:11111111:11111110

s 111111111111 11111111

Sheet 44 of 56 5,459,839

U.S. Patent Oct. 17, 1995

FIG. 34A

MSB LSB

IBM | Of 1 2|3 4|5l6l7l8|9,10,11|12|13 14|15
VEN | 15114113112]11 110191817161 51 41 3] 2] 1] 0
WORD 0 0f}o QBC QUEUE READ POINTER (QRP)
WORD 1 Q INTERRUPT QUEUE WRITE POINTER (QWP)

QRPS
QWPS

WORD BITS NAME: DESCRIPTION

0 0-11 RESERVED AT A0’ LEVEL.

15-14V
0 2-31
13-12V

QUEUE BYTE COUNT (QBC):
DEFINES THE NUMBER OF BYTES FOR A QUEUE ENTRY.
00 - 4BYTES (1K Q ENTRIES) 10 - UNDEFINED
01 - 8BYTES (512 Q ENTRIES) 11 -16BYTES (256 Q ENTRIES)

QUEUE READ POINTER (QRP):
DEFINES THE CURRENT VALUE OF THE QUEUE READ
POINTER.
FOR 4 BYTE QUEUES ALL 10-BITS ARE VALID, FOR 8 BYTE

QUEUES ONLY THE UPPER 9-BITS ARE VALID, AND FOR 16
BYTE QUEUES ONLY THE UPPER 8-BITS ARE VALID.
NON-VALID BITS MUST BE SET TO '0’.

0 14-151 QUEUE READ POINTER STATUS (Q RPS):
1-0V DEFINES THE CURRENT STATUS FOR THE READ POINTER.
00 = POINTER IS AVAILABLE AND VALID.
01 = POINTER IS TEMP. BEING USED BY ANOTHER
LPB DEVICE.

10 = THE QUEUE IS EMPTY.
11 = THE QUEUE IS NOT ENABLED, POINTER IS INVALID.

0 4-131
112V

1 0-3 |
1512V

QUEUE INTERRUPT (Ql):
DEFINES THE INTERRUPT USED TO INDICATE THAT
A QUEUE CONTAINS A QUEUE ENTRY.

0000 - DISABLED
0001 - RESERVED
0010- RESERVED
0011 - RESERVED
0100 - LPB INT(0)
0101 - LPB INT(1)
0110 - LPB INT(2)
0111 - LPBINT(3)

1000 - MC IRQ(0)
1001 - MC IRQ(1)
1010 - MC IRQ(2)
1011 - MC IRQ(3)
1100 - RESERVED
1101 - RESERVED
1110 - RESERVED
1111 - RESERVED

U.S. Patent

Oct. 17, 1995 Sheet 45 of 56 5,459,839

1 4-13 |
11-2V

QUEUE WRITE POINTER (QWP):
DEFINES THE CURRENT VALUE OF THE QUEUE WRITE
POINTER.
FOR 4 BYTE QUEUES ALL 10-BITS ARE VALID, FOR
8 BYTE QUEUES ONLY THE UPPER 9-BITS ARE VALID,

FOR 16 BYTE QUEUES ONLY THE UPPER 8-BITS ARE
VALID. '

NON-VALID BITS MUST BE SET TO '0".

1 14-15 |
1-0V

QUEUE WRITE POINTER STATUS (Q WPS):
DEFINES THE CURRENT STATUS FOR THE WRITE POINTER.
00 = POINTER IS AVAILABLE AND VALID.

01 = POINTER IS TEMP. BEING USED BY ANOTHER
LPB DEVICE.
10 = THE QUEUE IS FULL.

11 = THE QUEUE IS NOT ENABLED, POINTER IS INVALID.

FIG. 34B
FIG.
34A
FIG. 34
FIG.
34B

U.S. Patent

Oct. 17, 1995

Sheet 46 of 56

FIG. 35

5,459,839

011]213]4|5(6|7 |IBM
LPB /O ADDRESS 7|6|5'4‘3|2|1|0 VEN
|
— 00000000:00000000
00000000:00000010
QPR BYTE

QPF} SEG Qq# }7 .
' U QUEUE 0 «
00010001:00000000 POINTER
00010001:00000011 REGISTERS
00010001:00000100 QUEUE 1

POINTER l—4 BYTES
00010001:00000111 REGISTERS

64K BYTES
64 BYTES —

00010001:00111000 QUEUE E

POINTER
00010001:00111011 REGISTERS
00010001:00111100 QUEUE F

POINTER
00010001:00111111 REGISTERS | +

11111111:11111110

MMM 111111111

U.S. Patent Oct. 17, 1995 Sheet 47 of 56 5,459,839

FIG. 36
MSB LSB
IBM 0|1|2|3 4|5]6|7|8l9l10|11,12'1314|15
VEN | 15114[13(12j11|1019 1817161 51 41 31 21 11 O
WORDO | RESERVED QUEUE READ POINTER (QRP) QRPS
WORD1 | RESERVED QUEUE WRITE POINTER (QWP) QWPS

WORD BITS NAME: DESCRIPTION

0 0-31 RESERVED.
15-12V
0 4-13| QUEUE READ POINTER (QRP).
112V DEFINES THE CURRENT VALUE OF THE QUEUE READ
POINTER.

FOR 4 BYTE QUEUES ALL 10-BITS ARE VALID, FOR 8 BYTE
QUEUES ONLY THE UPPER 9-BITS ARE VALID, AND FOR 16
BYTE QUEUES ONLY THE UPPER 8-BITS ARE VALID.
NON-VALID BITS MUSTBE SET TO '0'.

0 14-15] QUEUE READ POINTER STATUS (Q RPS):
1-0V DEFINES THE CURRENT STATUS FOR THE READ POINTER.
00 = POINTER IS AVAILABLE AND VALID.
01 = POINTER IS TEMP. BEING USED BY ANOTHER
LPB DEVICE.
10 = THE QUEUE IS EMPTY.
11 = THE QUEUE IS NOT ENABLED, POINTER IS INVALID.

1 0-31 RESERVED.
15-12V
1 4-13 | QUEUE WRITE POINTER (QWP):
112V DEFINES THE CURRENT VALUE OF THE QUEUE WRITE
POINTER.

FOR 4 BYTE QUEUES ALL 10-BITS ARE VALID, FOR
8 BYTE QUEUES ONLY THE UPPER 8-BITS ARE VALID,
FOR 16 BYTE QUEUES ONLY THE UPPER 8-BITS ARE
VALID.
NON-VALID BITS MUST BE SET TO 0.

1 14-15 | QUEUE WRITE POINTER STATUS (Q WPS):
1-0V DEFINES THE CURRENT STATUS FOR THE WRITE POINTER.
00 = POINTER IS AVAILABLE AND VALID.
01 = POINTER IS TEMP. BEING USED BY ANOTHER
LPB DEVICE.
10 = THE QUEUE IS FULL.
11 = THE QUEUE IS NOT ENABLED, POINTER IS INVALID.

U.S. Patent Oct. 17, 1995 Sheet 48 of 56 5,459,839

FIG. 37

LPB MEMORY ADDRES
|

=9
QSEG Q POINTER
I

3207 . .
—> RRRR; Qggcjmooo:oooqooog QUEUE #0
1

QNUM QEBYTE :
322~ 326"
RRRR:00001111:11111111 QUEUE #0

324
0|1!2|3|4|5|6‘7 IBM
716151413{2[{1{0| VEN

RRRR:00010000:00000000 QUEUE # 1 R
—4KBYTES

RRRR:00011111: 11111111 QUEUE #1 <

64KBYTES

RRRR:11100000:00000000 QUEUE #E

RRRR: 11101111:11111111 QUEUE #E

RRRR:11110000:00000000 QUEUE #F

— RRRR: 11111111 : 11111111 QUEUE #F

U.S. Patent

Oct. 17, 1995 Sheet 49 of 56 5,459,839
READ QUEUE READ POINTER |\
FROM MIC LPB /O SPACE 340
T (BEING USED BY
ANOTHER LPB
VERIFY POINTER STATUS N\ DEVICE)
342
(QUEUE DISABLED ERROR UNAVAILABLE
OR EMPTY) AVAILABLE (BECOMES UNAVAILABLE
FOR OTHER LPB DEVICES)
QUEUE ERROR CONSTRUCT LPB PHYSICAL |\
REPORTED TO MEMORY ADDRESS 344
LOCAL PRO-
CESSOR BY MIC LPB MEM ADDR = QSEG:QNUM:
< ‘ QPOINTER:00
343 READ DATA N
' 4,8, OR 16 BYTES 346
LPB MEM ADDR =
QSEG:QNUM:QPOINTER:00
WRITE QUEUE READ POINTER |\
TO MIC LPB I/0 SPACE 348
RETURN NEW QPOINTER VALUE
NEW QPOINTER = QPOINTER:00 +QBC
MIC VERIFIES QPOINTER |>35q
| | OK [ERROR
A
QUEUE READ POINTER QUEUE ERROR REPORTED
UPDATED & MAINTAINED TO LP BY MIC,
BY MIC QP RESTORED
AN N\
352 354

U.S. Patent Oct. 17, 1995 Sheet 50 of 56 5,459,839

FIG. 39

&
<

READ QUEUE WRITE POINTER |\
FROM MIC LPB I/0 SPACE 360

T (BEING USED BY
ANOTHER LPB
VERIFY POINTER STATUS \ DEVlCE)
362
(QUEUE DISABLED | ERROR UNAVAILABLE
OR FULL) AVAILABLE (BECOMES UNAVAILABLE
I—_ FOR OTHER LPB DEVICES)
QUEUE ERROR CONSTRUCT LPB PHYSICAL [\
REPORTED TO MEMORY ADDRESS 364
LOCAL PRO-
CESSOR BY MIC LPB MEM ADDR = QSEG:QNUM:
QPOINTER:00
AN
363 WRITE DATA N
4.8, OR 16 BYTES 366
LPB MEM ADDR =
QSEG:QNUM:QPOINTER:00
WRITE QUEUE WRITE POINTERI\
TO MIC LPB I/0 SPACE 368
RETURN NEW QPOINTER VALUE
NEW QPOINTER = QPOINTER:00 +QBC
WHERE QBC = 4,8, OR
\ ey
MIC VERIFIES QPOINTER [“374° 18 BYTES
— Jox ERROR
A
QUEUE WRITE POINTER QUEUE ERROR REPORTED
UPDATED & MAINTAINED TO LP BY MIC,
BY MIC QP RESTORED |
N ' N

372 374

U.S. Patent Oct. 17, 1995

FIG. 40

MC /O ADDRESS

7l6llal3lal1lo]
716151413121110

I 1
00000000 : 00000000
00000000 : 00000001

CR MC IO BASE ADDRESS

i
1 1
RRRRRRRR:RRR00000

RRRRRRRR:RRR00011

RRRRRRRR:RRR00100

RRRRRRRR:RRR00111

RRRRRRRR:RRR01000

RRRRRRRR:RRR01011

11111111 11111110

11111111 1111111

: QRC REGISTER :

- QWC REGISTER -

: QD REGISTER

IBM

Sheet 51 of 56

VEN

<

5,459,839

w

}4 BYTES
4

i

T

—4 BYTES

—4 BYTES

— 64 KBYTES

A

U.S. Patent

MC I/O ADDRESS

MIC CR MC I/O BA + 00000 —»- QUEUE # STATUS ACKJAVL
MICCRMCI/OBA+00000— | 0| o |lo|oflolo|lofo

MICCRMCI/OBA+00000~— | 0 |lololo (ol o
MICCRMCI/OBA+00000— | 0|0 lofofo] o

Oct. 17, 1995 Sheet 52 of 56 5,459,839

FIG. 41
MSB LSB
ol1|2]3] 4 I 5 , 6|71 1BM
7161514131211 01]VEN

CRMC I/O BA+ STATUS: Q #: (READ/WRITE)
"00000' THE NUMBER OF THE QUEUE BEING REQUESTED FOR
BITS0-31 A QUEUE READ OPERATION. VALUES OF '0000' THROUGH
7-4V 1111’ ARE VALID.
CRMC |/O BA+ STATUS: (READ ONLY)
'00000’ RETURN STATUS ON THE QUEUE READ OPERATION.
BITS4-51 00 - QUEUE READ DATA READY
3-2vV 01 - QUEUE READ DATA NOT READY
1X - QUEUE READ DATA ERROR
CRMC /0 BA+ ACKNOWLEDGE (ACK): (READ ONLY)
'00000’ USED TO CLEAR THE QRC REGISTER SEMAPHORE AND
BITS 6 | MAKE THE MIC AVAILABLE FOR ANOTHER QUEUE
1V READ OPERATION.
0 = NO EFFECT (WRITE) 0 = VALID (READ)
1 = CLEAR SEMAPHORE (WRITE) 1 = INVALID (READ)
CRMC /O BA+ AVAILABLE (AVL): (READ ONLY)
'00000’ THIS IS THE QRC REGISTER SEMAPHORE WHICH INDICATES
BITS 7 | THE AVAILABILITY OF PERFORMING A QUEUE READ
oV OPERATION.
0 = OPERATION TEMPORARILY UNABAILABLE, CONTROL OF
OPERATION HAS ALREADY BEEN OBTAINED BY
ANOTHER USER.
1 = OPERATION AVAILABLE.
CRMC /O BA+ RESERVED AT A 0’ VALUE.
‘00001’
THROUGH
'00011°

U.S. Patent Oct. 17, 1995 Sheet 53 of 56 5,459,839
FIG. 42
MSB 1.SB
oj1]2]|3]| 4 | 5]6|7]|1BM
MC {/O ADDRESS 7161514131 2]11101]VEN
MIC CR MC I/O BA + 00000 — QUEUE # STATUS |ACKJAVL

MICCRMCI/OBA+00000— | 0l O|J]O|OjO]|] O] O]O
MICCRMCI/OBA+00000— j 0ojO0|jO | 0|0 O
MICCRMCI/OBA+00000~— | 0O} O jO0O 0] O} O

CR MC I/O BA+ STATUS: Q #: (READ/WRITE)
'00000’ THE NUMBER OF THE QUEUE BEING REQUESTED FOR
BITS0-31 A QUEUE READ OPERATION. VALUES OF '0000' THROUGH
7-4V 1111’ ARE VALID.
CRMC /O BA+ QUEUE BYTE COUNT (QBC): (READ/WRITE)
'00100’ THE QUEUE BYTE COUNT FOR QUEUE WRITE OPERATIONS.
BITS4-51 00 = 4 BYTES 10 RESERVED
3-2V 01 = 8 BYTES 11 = 16 BYTES
CRMCI/OBA+ ACKNOWLEDGE (ACK): (READ/WRITE)
'00100' USED TO CLEAR THE QWC REGISTER SEMAPHORE AND
BITS6 | MAKE THE MIC AVAILABLE FOR ANOTHER QUEUE
1V WRITE OPERATION.
0 = NO EFFECT (WRITE) 0 = VALID (READ)
1 = CLEAR SEMAPHORE (WRITE) 1 = INVALID (READ)
CRMC /O BA+ AVAILABLE (AVL): (READ ONLY)
'00100’ THIS IS THE QWC REGISTER SEMAPHORE WHICH INDICATES
BITS7 | THE AVAILABILITY OF PERFORMING A QUEUE WRITE
oV OPERATION.
0 = OPERATION TEMPORARILY UNABAILABLE, CONTROL OF
OPERATION HAS ALREADY BEEN OBTAINED BY
ANOTHER USER.
1 = OPERATION AVAILABLE.
CR MC I/O BA+ RESERVED AT A '0’' VALUE.
‘00101’
THROUGH
‘00111’

U.S. Patent Oct. 17, 1995 Sheet 54 of 56 5,459,839
READ Q READ SEMAPHORE
FROM QRCR
STEP 1. IN MIC MC 1/O SPACE
v
VERIFY AVL BIT
AVAILABLE UNAVAILABLE | (AVL=0
(AVL=1) ()
WRITE QNUM TO QRCR
STEP 2. IN MIC MC /O SPACE
READ STATUS FROM
STEP 3. QRCR glpkﬂclzCE MC I/O
STAT="10' STAT='01" | (NOT READY)
(Q READ ERROR) STAT='00' (READY)
MIC REPORTS READ QUEUE DATA
QUEUE READ ERROR| | FROM QUEUE DATA REG STEP 4
TO LOCAL IN MIC MC 1/O SPACE :
PROCESSOR (4, 8, OR 16 BYTES)
R AVL=1 (BECOMES AVAILABLE)

ABORT/CLEAR QUEUE READ QPERATION

I

WRITE ACK=1 TO QRCR

IN MIC MC I/0 SPACE

¢ AVL=1

MIC REPORTS POSSIBLE
QUEUE ERRORS TO
LOCAL PROCESSOR

STEP 5.

U.S. Patent

Oct. 17, 1995 Sheet 55 of 56 5,459,839

FIG. 44

\ 4

READ Q WRITE SEMAPHORE
STEP 1. FROM QWCR
IN MIC MC I/0 SPACE

A

VERIFY AVL BIT

(BECOMES AVAILABLE UNAVAILABLE | (AVL=0)
UNAVAILABLE)| (AVL=1)
v
WRITE QNUM & QBC

TO QWCR STEP 2.
IN MIC MC /O SPACE

Y
WRITE QUEUE DATA TO
QUEUE DATA REGISTER
IN MIC MC 1/O SPACE STEP 3.
(4, 8, OR 16 BYTES)

AVL=1 (BECOMES AVAILABLE)

ABORT/CLEAR QUEUE WRITE QPERATION

A 4
WRITE ACK=1 TO QWCR
IN MIC MC /O SPACE STEP 4.

AVL=1

v

MIC REPORTS POSSIBLE
QUEUE ERRORS TO
LOCAL PROCESSOR

U.S. Patent Oct. 17, 1995 Sheet 56 of 56 5,459,839

FIG. 45

0|1|2|3|4’5|6|7 IBM
MC 110 /l\DDRESS 7|6/5]4|3|2|1]0] VEN

f |
00000000 : 00000000
00000000 : 00000001

A

CR MC.I/O BASE ADDRESS
]

I .]
RRRRRRRR:RRR00000 | QRC REGISTER

RRRRRRRR:RRR00100 [QWC REGISTER

RRRRRRRR:RRR01000 | QD REGISTER

RRRRRRRR:RRR01100 S
FBL REGISTER —4 BYTES

RRRRRRRR:RRRO1111 <

RRRRRRRR:RRR10000 JOB D
. PENDING ~ —2 BYTES

1

RRRRRRRR:RRR10001 REGISTER

11111111 11111110

A

1111111 111111

5,459,839

1

SYSTEM AND METHOD FOR MANAGING
QUEUE READ AND WRITE POINTERS

This application is a continuation of U.S. patent appli-
cation Ser. No. 07/755,468, filed Sep. 5, 1991, by J. L.
Swarts et al., entitled “Queue Pointer Manager” assigned to
the same assignee as this application now abandoned.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in general to data commu-
nications between components of a data processing system.
More particularly, the invention relates to a queue manage-
ment facility partially implemented in hardware resulting in
a relatively inexpensive queuing mechanism with increased
performance over totally software managed queue struc-
tures.

2. Background of the Invention

In data processing systems, a queue is commonly used to
store a backlog of tasks that have been assigned to a unit of
the system by other system units. A queue is implemented as
memory, or a portion of memory, in which items of infor-
mation—queue entries—are stored in the order in which
they are received from the task requesting units, and from
which they are retrieved in the same order by the task
performing unit. Some queues have been managed by hard-
ware logic circuitry and other queues have been managed by
program or microprogrammed routines.

Two implementations of queues are common. One is a
first-in/first-out (FIFO) memory, having the property that an
item of information loaded into its input register, which is
located at the tail end of the queue, automatically propagates
through empty memory locations towards output registers
located at the head end of the queue, and is stored in the first
empty location closest to the output register. Retrieval of an
item of information from the output register causes all items
remaining in the FIFO to shift one location closer to the
output register. The other common implementation of a
queue is a circular buffer having a read and write pointer
associated therewith. The read pointer indicates the location
at the head end of the queue from which the next item of
information is to be retrieved and the write pointer indicates
the location at the tail end of the queue into which the next
item of information is to be stored. Retrieval of an item
causes the read pointer to point to the next consecutive
location that holds information, while storage of an item of
information causes the write pointer to point to the next
consecutive free location, available for information storage.

In conventional data processing systems, task requestors
and the task performer are allowed to communicate to the
queue only. That is, a task requestor may not transfer a task
to the task performer directly, by bypassing the queue, even
when the task performer is idle or waiting receipt of a task.
The process of storing a task in a queue, then either
propagating it through the FIFO queue or changing pointers
on a circular buffer queue, and finally retrieving a task from
the queue, takes time and hence the system is slowed down
by these procedures and performance is adversely affected.
Conventional queue administration systems are often not
efficient in transferring information between devices that
store information in the queue and devices that retrieve
information from the queue.

Queues implemented in hardware are expensive and
require a lot of integrated circuitry. Hardware managed
queue structures require memory address buses, data bus,

10

15

20

25

30

35

40

45

50

55

60

65

2

and multiplexing logic. There is a great deal of complexity
in the memory timing and control logic necessary to access
the queue memory. Because of these timing delays, there is
a great latency in queue data transfers because of the
indivisible, uninterruptible memory operations needed.

In a software managed queue structure there is a need to
update the software and verify the queue write and queue
read pointers. There is a need to determine queue overflow,
underflow and other error conditions. The software must be
used to set/clear the queue interrupts. Much internal central
processing time and external memory sources are needed to
hold the necessary pointer array. The programming code
storage requirements of a software managed queue is very
large.

What is needed is a relatively inexpensive queuing
mechanism with increased performance to handle high
speed data communications within a data processing system.

OBJECTS OF THE INVENTION

Itis therefore an object of the invention to provide a queue
management facility partially implemented in hardware
resulting in a relatively inexpensive mechanism with
increased performance over a totally software managed
queue structure.

It is another object of the invention to provide a queue
pointer manager that can be controlled by either hardware or
software.

It is another object of this invention to provide a built-in
public queue capability whereby a given queue may be
written or read by more than one data processing entity.

SUMMARY OF THE INVENTION

These and other objects, features and advantages are
accomplished by a queue pointer manager having its per-
formance critical functions implemented in hardware and
the rest of the facility implemented in software. The hard-
ware function consists of a read pointer register having a
status field. The status field specifies queue busy/available,
empty/full, and enable/disable information. Built-in hard-
ware controls a write pointer region having a status field for
each queue. Also in hardware is an interrupt field for each
queue to denote which interrupt is activated when the queue
goes non-empty, and a queue block length field for each
queue to define the queue entry length in bytes. The hard-
ware resources are implemented in fast-access registers. The
pointers contain memory addresses to a general purpose
random access memory in which the physical queue ele-
ments reside. The queue pointer manager is mapped into the
CPU memory and/or input/output spaces. The above fields
may be initialized by one region and actual queue operations
may be performed by another region.

The facility software function involves reading either the
queue read pointer or queue write pointer to perform queue
read/write operations, checking the status of the queue,
reading or writing the queue entry data as normal memory
accesses and then returning the queue read pointer or write
pointer to the queue pointer manager hardware function.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, features and advantages of the
invention will be more fully appreciated with reference to
the accompanying figures.

FIG. 1 is a representation of a local area network of
personal computers, workstations and main frames.

FIG. 2 is a block diagram of an interface according to the

5,459,839

3

present invention which links a Micro Channel bus to an
external fiber optic bus through a local data bus and a local
processor bus.

FIGS. 3, 3A, and 3B are a block diagram of the Micro
Channel interface chip.

FIGS. 4, 4A, and 4B are a diagram of the external I/O pins
to the Micro Channel in interface controller of the present
invention.

FIG. 5 is a block diagram of the Micro Channel interface
according to the present invention.

FIGS. 6A—6E depict the logic in the control and data
signal capturing and synchronizing block in the Micro
Channel interface of the present invention.

FIG. 7 is a representation of a state machine in the Micro
Channel.

FIG. 8 depicts a timing diagram where two words are
written on the local processor bus.

FIG. 9 depicts a timing diagram where two words are read
from the local processor bus.

FIG. 10 depicts a timing diagram where a read operation
takes place in the Micro Channel interface chip while it is in
a slave timing mode with two 25 MHz wait states.

FIG. 11 depicts a timing diagram where a write operation
takes place on the Micro Channel interface chip while it is
in a slave timing mode with two 25 MHz wait states.

FIG. 12 is a block diagram of the protocol signal con-
nections for a two chip ring.

FIG. 13 is a block diagram of the protocol signal con-
nections for a multi-chip ring.

FIG. 14 is a block diagram of the local data bus ring state
machine.

FIGS. 15A-1 and 15A-2 are a block diagram of the local
data bus protocol boundary logic.

FIG. 15B is a block diagram of the TRT and THT logic
timers on the local data bus.

FIG. 16 is a timing diagram of the local data bus start-up
with immediate access to the Micro Channel interface chip.

FIG. 17 is a timing diagram for driving the local data bus
signals. :

FIG. 18 is a timing diagram of the local data bus depicting
a Micro Channel interface chip read of five words with no
wait states.

FIG. 19 is a timing diagram of the local data bus depicting
a Micro Channel interface chip write of five words.

FIG. 20 is a timing diagram of the local data bus depicting
a Micro Channel interface chip read of two words, write of
two words and read of one word.

FIG. 21 is a flow diagram of the master execution process.

FIGS. 22, 22A, and 22B are a block diagram depicting the
relationship between the command word, the control block,
the status word and the post command for the Micro Channel
interface chip.

FIG. 23 depicts the fields within the Micro Channel
interface chip command word.

FIGS. 24-27 depict the fields within the Micro Channel
interface chip control block.

FIG. 28 depicts the valid combinations of Micro Channel
interface chip control block flags in a preferred embodiment.

FIGS. 29, 29A, and 29B depict the fields of the Micro
Channel interface chip status word.

FIG. 30 shows the fields of the Micro Channel interface
chip post command.

10

15

20

30

35

40

45

50

55

60

65

4
FIG. 31 depicts the Micro Channel versus local data bus
access memory map.
FIG. 32 depicts the local processor bus to local data bus
access memory map.

FIG. 33 depicts the local processor bus memory map
showing the queue initialization registers.

FIGS. 34, 34A, and 34B show the fields in a queue
initialization register according to the present invention.

FIG. 35 depicts the local processor bus I/O map showing
the queue pointer registers.

FIG. 36 shows a preferred layout of a queue pointer
register.

FIG. 37 depicts the relative addresses of queues within the
local process bus.

FIG. 38 is a flow diagram of the local processor bus queue
read operation protocol flow.

FIG. 39 is a flow diagram of the local processor bus queue
write operation protocol flow.

FIG. 40 depicts the queue read control register, the queue
write control register and the queue data register mapped
against their Micro Channel I/O addresses.

FIG. 41 depicts the queue read control register.
FIG. 42 depicts the queue write control register.

FIG. 43 is a flow diagram of the Micro Channel queue
read operation protocol flow.

FIG. 44 is a flow diagram of the Micro Channel queue

“write operation protocol flow.

FIG. 45 depicts the free block list and job pending register
mapped against the Micro Channel 1/O map.

DETAILED DESCRIPTION OF THE
INVENTION

The following definitions will be helpful to the reader in
understanding the following description.

Term Definition

Byte A group of eight signal lines contained
within a bus.
Any device engaging in a data transfer or

request of a bus.

Bus Participants

Central A group of system logic responsible for

Steering Logic assisting devices in maintaining and
controlling Micro Channel data bus width
compatibility.

Device A block of logic which drives or receives
information onto or from a bus, interprets
the information and/or performs a specified

. function.

T/O Slave A slave device which is addressable within
the /O address space of the bus.

Master A device which gains control of a bus with

the intent of causing a data transfer

to/from a slave.

A slave device which contains memory within
the bus addressable space.

Memory Slave

Node A device.

Quene A sequence of stored data or Queue Entries
awaiting processing.

Quene Entry 4, 8, or 16 bytes of stored data which
together define a task, control, or
informational data to be processed at a
later time.

Queue Read A pointer to the current sequential

Pointer (QRP) location of the next Quene Entry to be
processed.

Queue Write A pointer to the current sequential

5,459,839

5
-continued

Term Definition

Pointer (QWP) location where a Queue Entry can be
appended to a Queue.

Resource A block of logic or device which makes
itself accessible to a device for an
information exchange.

Semaphore A flag or indication of current status.

Slave A device which provides or receives data
during an operatien under the control of a
master.

Steering Directing the bytes contained in a bus to
another byte within the bus.

System A group of system logic responsible for

Controller Micro Channel arbitration, device
selection, system memory refresh, unique
functions, and interfacing with the system
processor.

Transfer An exchange of information between two
devices.

Word A group of 16 signals contained in a bus,
two bytes.

FIG. 1 depicts a mainframe 100 such as an IBM main-
frame following the 370 architecture connected to worksta-
tions 101 and 102 and personal computers 103 and 104 by
means of a serial bus 106. In the preferred embodiment, the
mainframe is an IBM mainframe following the 370 archi-
tecture such as the 3090, or ES/9000 (TM), the workstations
101 and 102 are IBM RISC System/6000’s (TM) and the
personal computers are in the IBM PS/2 (TM) family. The
workstations 101, 102 and personal computers comprise
well known components such as a system processor unit,
ROM, RAM, one or more system busses, a keyboard, a
mouse and a display. Further information can be found on
the RISC System/6000 in IBM RISC System/6000 POWER-
station and POWERserver Hardware Technical Reference -
General Information Manual (SA23-2643), IBM RISC Sys-
tem/6000 POWERstation and POWERserver Hardware
Technical Reference - Options and Devices (SA23-2646),
IBM RISC System/6000 Hardware Technical Reference -
7012 POWERstation and POWERserver (SA23-2660), IBM
RISC System/6000 Hardware Technical Reference - 7013
and 7016 POWERstation and POWERserver (SA23-2644)
and IBM RISC System/6000 Hardware Technical Reference
- 7015 POWERserver (SA23-2645). Information on the
PS/2 family can be found in Technical Reference Manual
Personal System Model 50,60 Systems, Part No. 68X2224,
Order No. S68X-2224 and Technical Reference Manual
Personal Systems (Model 80), Part No. 68X2256, Order No.
S68X-2256. A description of the serial bus architecture can
be found in Serial I/O Architecture: PKD081102, Feb. 29,
1989. Both the RISC Systemn/6000 and the PS/2 incorporate
the Micro Channel Bus as their systems bus. The Micro
Channel contains a 32-bit address bus, a 32-bit data bus, an
arbitration bus and a variety of control signals. Further
information can be found on the Micro Channel in Low-End
Parallel Bus Architecture, Family 2: LEPB-ADS-0002-00-
4-U7 and Personal System/2 - Hardware Interface Technical
Reference Architectures, Part No. 84F9808, Order No.
X84F-9808-00. All the above references are available from
the IBM Corporation.

All of the workstations and personal computers 101-104
interface with serial bus 106 by means of a Micro Channel
to Serial Bus Adapter (MCSB) card 108. FIG. 2 shows a
functional block diagram of the various components of the
MCSB card 108. Serial bus 106 and Micro Channel Bus 110
are coupled to the serial interface 113 and the Micro Channel
Interface controller (MIC) 112 respectively. The MIC chip

10

15

20

25

30

35

40

45

50

55

60

65

6

112 js a high performance interface between three busses:
the Micro Channel, a general purpose microprocessor bus
called the Local Processor Bus 115, and a dedicated data bus
called the Local Data Bus 117. The purpose of the MIC 112
is to translate the protocol on these three busses and allow
for quick and efficient data and control transfers between
them. The MIC 112 is intended to be used on high speed /O
or processing adapters which require preprocessing, addi-
tional processing or data management functions before/after
data can be moved to or sent by a device on the Micro
Channel.

Serial interface 113 represents the serial input/output
circuitry which includes optical digital signal conversion,
clock recovery synchronization, serial to parallel conver-
sion, optic decoding and coding and clock conversion. The
MIC 112 and the serial interface 113 are joined by the Local
Processor Bus 115 and local data bus 117. The Local
Processor 119 is preferably an INTEL 80960 (TM) processor
which provides the processing power for the Micro Channel
to serial bus interface 108. The Local Processor 119 also
includes programmable read only memory 120 (same or
different chip). A Local Processor Store 121 is also coupled
to the Local Processor Bus 115 and provides storage for the
INTEL 80960 programs as well as storage for the MIC 112
logic. PROM 120 contains diagnostics and initialization
code for the devices coupled the Local Processor Bus 115.
Other devices 122 such as printers, modems or video moni-
tors can be coupled to the Local Processor Bus 115. The
local data bus 117 is used for the data as opposed to
processing functions between the MIC chip 112 and serial
interface 113. The MIC 112 and serial interface 113 share the
local data store 123 which provides a buffer for data which
initially comes from either the serial or Micro Channel
Busses 106, 110. For example, some data might initially
come in from the Micro Channel 110, the MIC 112 would
initially store the data in local data storage 123. The MIC
112 would then notify the Local Processor 119 that data is
present and the Local Processor 119 would start the serial
interface 113 to move the Micro Channel data from the local
data store 123 to the serial bus 106.

One preferred embodiment of the Micro Channel to Serial
Adapter Card is described in commonly assigned copending
application Serial No. 07/693,834, and is entitled “Serial
Channel Adapter” filed Apr. 30, 1991 now abandoned in
favor of U.S. patent application No. 08/206,290, filed Mar.
7, 1994, which is hereby incorporated by reference. Other
commonly assigned, copending applications related to the
present invention include: “Micro Channel Interface Con-
troller” by J. L. Swarts, et al., filed Sep. 5, 1991, as U.S.
patent application No. 07/755,477, abandoned in favor of
U.S. patent application No. 08/101,793, filed Aug. 2, 1993,
now U.S. Pat. No. 5,379,386 issued Jan. 3, 1995 which
describes the functions of the MIC 112; “1-Bit Token Ring
Arbitration Architecture” by G. L. Guthrie, et al., filed Sep.
5, 1991 as U.S. patent application No. 07/755,474, now U.S.
Pat. No. 5,388,223 issued Feb. 2, 1995; and “Micro Channel
Interface State Machine and Logic” by J. L. Swarts, filed
Sep. 5, 1991 as U.S. patent application No. 07/755,476.

Below is a summary of highlighted features/functions
which the MIC 112 supports.

Micro Channel Interface Features

Master and Slave capability

10 MHz Streaming Data transfer rate
16/32/64-bit Streaming Data transfer widths
Bus Steering

Burst capability

5,459,839

7

Programmable Memory and I/O space utilization

Memory Address capability of 4 G bytes

T/O Address capability of 64K bytes

Peer to peer capability

Fairness

Address and Data Parity

Up to 8 Interrupts

Access to Vital Product Data

Local Processor Bus Interface Features

Intel 80C186/80960KB compatible bus. Some external
MSI logic may be required depending on the specific
implementation to guarantee proper interfacing with
the microprocessor. ’

Master and Slave capability

Hardware Queue Management capability

Memory Address capability of 1 Mbyte

Address and Data Parity

Local Data Bus Interface Features

100 M bytes/sec burst transfer rate

Master capability

Address capability of 1 Mbyte

Programmable Read Wait States

Time shared bus arbitration

Address and Data Parity

Extensive error detection and logging

Self-Test capability

Internal Wrap capability

64 byte Data Buffering

Micro Channel Interface Controller (MIC)
Overview

In FIG. 3 the MIC 112 allows data transfers to occur
between the MC 110, LDB 117, and LPB 115. To accom-
modate the high speeds of the MC 110, the MIC 112
provides buffers 145 which improve overall throughput
performance.

As shown in FIG. 3, the MIC 112 is partitioned into
several functional units. Each of these functional units are
dedicated to perform a special operation or task which will
in some way interact with one or more of the other func-
tional units. Each of the units contains a lower level of
contro! and/or data logic specifically designed for perform-
ing its operation. Together, these units provide the MIC 112

10

15

20

25

30

35

40

45

with its interconnections between the MC 110, LDB 117,

and LPB 115.

The MC Interface 130 is responsible for implementing the
proper timing, control, and data interfacing required to
connect the MIC 112 to the Micro Channel 110. The MC
Interface 130 contains logic to synchronize, to interpret, and
to control address, data, arbitration, parity, interrupt, and
contro]l handshaking signals with the other vnits within the
MIC 112. The MC Interface 130 allows the operation of two
MC modes, the Basic Transfer mode and the Stream Data
Mode.

The Basic Transfer mode defines the default protocol of
the MC 110. Most MC compatible devices have the ability
to perform operations in this mode. While operating in this
mode the MIC 112 can be defined by the following MC bus
device types:

Intelligent Bus Controller

T/O Slave

50

55

60

65

Memory Slave

Setup Slave

When operating as an Intelligent Bus Controller the MIC
112 is considered to be a MC master. The MIC 112 only
becomes a MC Master when a commanded transfer has been
initiated. While operating as an I/O, Memory or Setup Slave
the MIC 112 is considered to be a MC slave. The MIC 112
only becomes a MC slave when initiated by another device
acting as a MC Master.

The Stream Data mode allows the MIC 112 to participate
in high speed data transfers with other Stream Data mode
MC devices. Stream Data mode provides significant perfor-
mance enhancements for transfers of large blocks of data
and automatic speed matching for clock synchronous data
transfers. While in Stream Data mode the MIC 112 will
operate as one of the following MC types:

Streaming Data Master
Streaming Data Slave

The MIC 112 operates as a Streaming Data Master only
when initiated by a commanded transfer and operates as a
Streaming Data Slave when initiated by another device
acting as a Streaming Data Master. MC Data Interface 131
and MC Address Interface 132 are part of the MC interface
and control the data and address information respectively.
The Micro Channel Interface 130 also includes control code
134 which includes code used for capturing command and
strobe signals of the Micro Channel, the synchronous state
machine and data validation code.

The LPB Interface 133 is responsible for implementing
the proper timing, control, and data interfacing required to
connect the MIC 112 to the Local Processor Bus 115. The
LPB Interface 133 contains logic to control the address,
data, arbitration, interrupt, parity, error, and control hand-
shaking signals. The MIC 112 can operate as a master or as
a slave on the LPB 115. LPB Master operations can be
initiated by tasks necessary to execute and complete a
commanded transfer, a MC device, a reportable error, or
maintenance of the Prefetch Free Block Buffer. Slave opera-
tions are controlled by devices on the LPB 115 requesting
access to the LDB 117, the MIC’s Queue Management
function, or error and internal MIC 112 control and initial-
ization registers.

The LDB Interface 135 is responsible for implementing
the proper timing, control, and data interfacing required to
connect the MIC 112 to the Local Data Bus 117. The LDB
Interface 135 contains logic to control the address, data,
arbitration, parity, error, and control signals. In the preferred
embodiment, unlike the LPB 115 and MC 110 on the LDB
117, the MIC 112 only operates as a LDB Master. LDB
Master operations are initiated by a commanded transfer, a
MC device, or by a LPB device. However, when not a
Master, the MIC 112 can monitor the LDB 117 and check for
possible protocol or parity errors. The LDB Interface 135
can be divided in the LDB Data Interface 136 and LDB
Address 137 which can handle the data and address signals
respectively.

The Master Execution Unit 139 is responsible for con-
trolling and coordinating all commanded transfer activities
between other units within the MIC 112. A list of detailed
operations and tasks which the Master Execution Unit is
capable of performing is shown below:

Monitors the Queue Manager 143 for pending com-
manded transfers.

Coordinates fetching of MIC Command Words (MCW)
and MIC Control Blocks (MCB) with the LPB Interface 133.

5,459,839

9
Controls the initialization and loading of the Micro Chan-
nel Address Generator (MAG) 155, the Local Address
Generator 156, and the Output Data Buffer (ODB) 149.
Controls when the MC Interface 130 fetches Free Blocks
from other MC devices.

Coordinates the data transfer between the MC Interface
130 and LDB Interface 135.

Coordinates with the MC Interface 130 Queue Write
operations for posting completion status to other MC
devices.

Controls the posting of MIC Status Words (MSW), which
indicate completion status of the commanded transfer and
possible errors which may have occurred.

The Error Controller (EC) 141 monitors MIC internal
activities for possible error situations or conditions. If an
error occurs, the EC 141 is responsible for coordinating with
the LPB Interface 133 posting of an Unsolicited Status Word
(USW).

The Queue Manager 143 (QM) is responsible for con-
trolling hardware pointers indicating the current locations of
pending Command Words, Status Words, or Free Blocks and
current locations where new Command Words, Status
Words, or Free Blocks can be entered. In maintaining these
pointers, queues of Command Words, Status Words, or Free
Blocks can be stored in a FIFO like manner for later
retrieval. The QM 143 is also responsible for indicating to
either the MIC 112 or a LPB 119, 122 device whether a
Queue contains pending data. The QM 143 has the ability to
maintain pointers for 16 Queues located in the LPB Memory
space 121 and controlling an assignable interrupt to each
Queue. Also, the QM monitors pointer activity for possible
errors and reports them to the LPB Interface 133 for later
retrieval.

The MIC 112 contains a group of six internal buffers 145.
These buffers are used to speed match and coordinate data
transfers between the MC, LPB, and LDB Interfaces 130,
133, 135.

The Output Data Buffer (ODB) 149 is a 16x36-bit, 1-port
FIFO capable of holding 64 bytes of data and byte parity.
The purpose of the ODB 149 is to buffer MC Master data
from the MIC LDB Interface 137 to the MC Interface 133
or to the IDB for LDB wrap operations. The loading and
unloading of the ODB 149 is controlled by the MIC LDB
and MC Interface 135, 130 under the guidance of the Master
Execution unit.

The Input Data Buffer (IDB) 150 is a 16x36-bit, 2-port
FIFO, capable of holding 64 bytes of data and byte data
parity. The purpose of the IDB 150 is to buffer data transfers
during all MC Slave operations and MC Master read opera-
tions to and/or from the MIC LDB Interface 135 unit, as well
as LDB wrap operations.

The Input Address Buffer JAB) 151 is a 16x23-bit, 2-port
FIFO. The purpose of the IAB 151 is to buffer addresses and
control signals related to data stored in the IDB 150.
Addresses buffered in the IAB 151 can be loaded from either
the Slave Address Generator (SAG) 154 or the Local
Address Generator (LAG) 156.

The Queune Read Buffer (QRB) 146 is a 8x18-bit, 2-port
FIFO. The purpose of the QRB 146 is to buffer up to 16
bytes of Queue data and parity requested by a MC device.
The LPB Interface 133 controls the writing of the QRB 146
under the management of the QM 143 when a request from
the MC 110 is made. The QRB 146 can only be read when
the MIC 112 is a MC Slave. Read access to the QRB 146 is
controlled by the MIC MC Interface 130 using a semaphore

10

15

20

25

30

35

45

50

55

60

65

10

and control register.

The Prefetched Free Block Buffer (FBB) 147 is an 8x18-
bit, 2-port FIFO. The purpose of the FBB 147 is to maintain
four byte Free Block entries for quick access by a MC
device. These Free Block entries contain the starting physi-
cal MC Memory address needed to access an available block
of memory on the LDB 117. When a MC device has
removed a Free Block entry from the FBB 147, the MIC 112
can fetch another FB entry from the MIC LPB Interface 133.
In the preferred embodiment, the FBB 147 can only be read
when the MIC 112 is a MC Slave.

The Queue write Buffer (QWB) 148 is a 16x25-bit, 2-port
FIFO. The purpose of the QWB 148 is to buffer data, parity,
and control, which is designed for a Queue on the LPB 115
managed by the QM 143. Up to 32 bytes of Queue data can
be buffered. In the preferred embodiment, the QWB 148 can
only be written to when the MIC 112 is a MC Slave. Write
access to the QWB 148 is controlled by the MC Interface
130 using a semaphore and control register. Read access to
the QWB 148 is controlled by the MIC LPB Interface 133
and QM 143.

The MIC 112 contains three Address Generators 153
which provide most of the addressing requirements for data
transfer between the MC and LDB Interfaces 130, 135.

The Slave Address Generator (SAG) 154 is used during
MC Streaming Data Slave and LDB wrap operations. Its
purpose is to provide addresses to the IAB 151 which
correlate to the data being received by the MC Interface 130.
These addresses are then used by the MIC LDB Interface
135. The SAG 154 can address up to 1 Mbyte of data.

The Micro Channel Address Generator (MAG) 155 is
used during commanded transfer operations. The MAG 155
provides the MC Interface 130 with addresses needed for
MC Master operations. While the MAG 155 is capable of
accessing 4 G bytes of data, the MAG 155 can only
increment addresses within a 64 Kbyte address range during
a single commanded transfer. The MAG 155 also provides
the SAG 154 with initial addresses during a LDB wrap
operation.

The Local Address Generator (LAG) 156 is used during
commanded transfers to address data destined to or sourced
from the LDB Interface 135. While the LAG 156 can access
1 Mbyte of data, the LAG 156 can only increment addresses
within a 64 Kbyte address range during a single commanded
transfer.

The Self Test Interface (STI) 157 provides a serial inter-
face for diagnostic and debug operations. The STI 157
provides control and access to scan strings, registers, and
clock controls within the MIC 112. The STI 157 can be
accessed either directly or via external I/O signals.

The definitions, protocols, electrical characteristics, and
physical requirements of the external signal I/O, power, and
ground pins are described in this section. Positive logic is
used to describe the logic levels used in this document. All
of the logic signal lines are TTL compatible. The functions
of the external I/O pins of the MIC 112 are defined in this
section. FIG. 4 illustrates a summary of the external signals
which interface with the MIC 112.

MC Interface

This section defines the signal I/O used to interface the
MIC 112 with the MC 110. All references to master and
slave are for Micro Channel operations.

+A(0:31)i

5,459,839

11

+Address Bus Bits 0 through 31: These signal lines are
used to address memory and I/O slaves attached to the MC
110 as well as select the MIC 112 for slave operations. The
32 address lines allow access of up to 4 G bytes of memory.
Only the lower 16 address bits are used for I/O operations
and all 16 lines must be decoded by the I/O slave.

+APAR(0:3)i

+Address Parity Bits 0 through 3: These lines represent
the odd byte parity of all address bits on the MC 110 during
read and write operations. A master generates a parity bit for
each address byte and the receiving slave performs the parity
checking to ensure the integrity of the address. +APAR(0)i
represents parity on +A(0:7)i, +APAR(1)i represents parity
on +A(8:15)i, +APAR(2)i represents parity on +A(16:23)i,
and +APAR(3)i represents parity on +A(24:31)i. These
signals are also used during a 64-bit Streaming Data transfer
and represent odd byte parity for data on the address bus.

—APAREN

—Address Parity Enable: This signal is generated by a
master to indicate to a slave that the address parity signal
lines are valid. This signal is driven active by a master when
it places an address on the MC 110. During the 64-bit
Streaming Data mode this signal is sourced by the device
which is sourcing the data.

+D(0:31)i

+Data Bus Bits 0 through 31: These lines are used to
transmit and receive data to and from a master and slave.
During a Read cycle, data becomes valid on these lines after
the leading edge of —CMD but before the trailing edge of
—CMD and must remain valid until after the trailing edge of
—CMD. However, during a Write cycle, data is valid before
and throughout the period when the ~CMD signal is active.

+DPAR(0:3)i

+Data Parity Bits 0 through 3: These signals represent odd
byte parity on the Data Bus, +D(0:31)i. A parity bit is
generated for each Data Bus byte. +DPAR(0)i represents
parity on +D(0:7)i, +DPAR(1)i represents parity on
+D(8:15)i, +DPAR(2)i represents parity on +D(16:23)i, and
+DPAR(3)i represents parity on +D(24:31)i.

—DPAREN

—Data Parity Enable: This signal is generated by the
device sourcing the data to indicate that the data parity signal
lines are valid.

—-ADL

—Address Decode Latch: This signal is driven by the
master as a convenient mechanism for a slave to latch valid
address and status bits. Slaves can latch information with the
trailing edge of —ADL.

—CD SFDBK

—Card Selected Feedback: This signal is driven by the
MIC 112 as a positive acknowledgement of its selection by
a master. This signal is not driven when the MIC 112 has
been selected as a setup slave. This signal can be used to
generate the —CD DS16 and —CD D832 signal as well.

—-SFDBKRTN

—Selected Feedback Return: This signal is driven by the
systern logic to return the positive acknowledgement from a
slave to the master of its presence at the address specified by
the master.

-DS 16 RTN

~Data Size 16 Return: This signal is driven by the system
logic to indicate to a master the presence of a 16 bit data port
at the location addressed.

10

15

20

25

30

35

40

45

50

55

60

65

12

-DS 32 RTN

—Data Size 32 Return: This signal is driven by the system
logic to indicate to a master the presence of a 32 bit data port
at the location addressed.

—BE(0:3)i ,

—Byte Enable Bits 0 through 3: These lines are used
during data transfers to indicate which data bytes will be
valid on the MC 110. —-BE(0)i enables +D(0:7)i, —-BE(1)i
enables +D(8:15)i, —BE(2)i enables +D(16:23)i, and
—BE(3)i enables +D(24:31)i. These signals are not valid for
8-bit or 16-bit Micro Channel Basic Transfer operations.

+MADE 24

+Memory Address Decode Enable 24: This signal pro-
vides an indication of usage of an unextended (24 bit)
address on the MC 110. When active (high), in combination
with an address, indicates that an unextended address space
less than or equal to 16 MB is on the MC 110. When inactive
(low), in combination with an address, indicates that an
extended address space greater than 16 MB is on the MC
110. This signal is driven by all masters and decoded by all
memory slaves, regardless of their address space size.

When the MIC 112 is a MC Master this signal is deter-
mined by the upper byte of the MAG 155. If the upper byte
is equal to ‘00000000’ then +MADE24 is active high.

—SBHE

—System Byte High Enable: This signal indicates whether
the high byte of data is enabled when communicating with
a 16-bit MC Slave.

+M/-10

+Memory/-I/O Cycle: This signal distinguishes a MC
Memory cycle from a MC I/O cycle.

-S0,-S1

—Status Bits 0 and 1: These signals provide the indication
of the start and define the type of MC cycle.

—-CMD

—Command: This signal is used to define when data is
valid on the MC 110. The trailing edge of this signal
indicates the end of a MC cycle.

+CD CHRDY

+Card Channel Ready: This signal allows a slave addi-
tional time to complete a bus operations. When activating
this signal during a read operation, a slave promises that data
will be valid on the bus within a time specified. A slave may
also use this signal during a write operation if more time is
needed to store the data from the bus.

+CHRDYRTN

Channel Ready Return: This signal is driven by the
system logic to return the +CD CHRDY signal received
from the slave to the master.

—SDEN

~Streaming Data Enable: This signal is used to enable the
external MSI drivers when the MIC 112 has been selected as
a MC Slave with Streaming Data capability.

-MSDR

—Multiplexed Streaming Data Request: This signal indi-
cates whether a MC Slave, or the MIC 112 when selected as
a MC Slave, has the capability to perform an 8-byte Stream-
ing Data transfer.

—SDR(0:1)

—Streaming Data Request Bits 0 through 1: These signals
provide information about the performance characteristics
during Streaming Data mode. This information is used by
the MIC 112 as a master to determine the maximum clocking

5,459,839

13

rate of the slave device during a Streaming Data transfer.

-SD STB

—Streaming Data Strobe: This signal determines when
data is valid during a Streaming Data transfer. The maxi-
mum clock rate of this signal is determined by the
—SDR(0:1) lines and the Streaming Data Clock input sig-
nals.

+ARBI(0:3)i

+Arbitration Input bits 0 through 3: These signal lines are
used to receive the arbitration level presented on the MC
Arbitration Bus. The lowest priority ARB bus level has a
hexadecimal value of ‘F’ and the highest priority ARB bus
level has a hexadecimal value of ‘0’. ARB level of ‘F’ should
be used for the default MC Master.

+ ARBO(0:3)i

+Arbitration Output bits 0 through 3: These signal lines
are used when the MIC 112 arbitrates for use of the MC 110.

+ARB/-GNT

+Arbitration/~Grant: This signal defines when an arbitra-
tion cycle begins and ends on the MC 110.

-BURST

—Burst: This signal is driven by an arbitrating Bus Par-
ticipant to indicate to the System Controller the extended use
of the MC 110 when transferring a block of data. This type
of data transfer is referred to as a burst cycle. The signal is
shared by all Bus Participants and can only be activated by
the participant granted the MC 110.

—-PREEMPT

—Preempt: This signal is driven by arbitrating Bus Par-
ticipants to request usage of the MC 110 via arbitration. Any
Bus Participant with a bus request will activate -PREEMPT
and cause an arbitration cycle to occur. A requesting Bus
Participant will remove its preempt upon being granted the
MC 110.

~-IRQ(0:3)

—Interrupt Request bits 0 through 3: These signals are
used to indicate to the System Processor that an I/O Slave
requires attention.

+IRQ__SEL/SS1_OUT

+Interrupt Request Select/Scan String 1 Output: This
signal can be used by external logic to control which set of
four MC Interrupt Request signals can be active. This signal
can then effectively give the MIC 112 access to eight MC
Interrupt Requests. This signal is set in a POS Register field.
In addition, this signal is defined as the output of scan string
1 during LSSD test mode.

-CD SETUP

—Card Setup: This signal is used to individually select
devices during a system configuration. When this signal is
active, configuration data and the Device ID may be
accessed.

—CHCK

—Channel Check: This signal is used to indicate a high
priority interrupt to the System Controller that an exception
condition, i.e. parity error, etc., has occurred on the MC 110.
A field in a POS register defines whether this signal is
synchronous or asynchronous.

+M/-S

+Master operation/—Slave operation: This signal gives an
indication of the current Micro Channel operation that the
MIC 112 is participating in. This signal can be used to
control the direction and enabling of external Micro channel
drivers and receivers.

10

15

20

25

30

35

40

45

50

55

60

65

14

+DO/-1

+Data Output Operation/~Input operation: This signal is
used to indicate the direction of +D(0:31)i and
+DPAR(0:3)i.

+A0/-1

+Address Output Operation/—Input operation: This signal
is used to indicate the direction of +A(0:31)i and
+APAR(0:3)i.

-DLOE

—Data Low Output Enable: This signal is used to indicate
whether the lower two bytes of the MC data bus are active.

Local Processor Bus Interface

This section defines the signal I/O used to interface the
MIC 112 with the LPB 115. All references to master and
slave are for Local Processor Bus operations.

+ADDR/DATA(0:19)i

+Address/Data bus bits 0 through 19: This bus is used to
address, read from, and write to Local Processor Store 121.
This bus provides for addressing of up to 1 Mbyte.

+A/D PAR(0:2)i

+Address/Data Parity bits 0 through 2: These lines pro-
vide odd parity for +ADDR/DATA(0:19)i. +A/D PAR(0)i
provide odd parity for the most significant 4-bits when
address is present. +A/D PAR(1)i provide odd parity for
+ADDR/DATA(4:11)i. +A/D PAR(2)i provide odd parity for
+ADDR/DATA(12:19)i.

-ALE

—Address Latch Enable: This signal is be used to exter-
nally latch the address on the +ADDR/DATA(0:19).

+R/W ’

+Read/Write: This signal is used to indicate the operation
and direction of data on the LPB 115.

-DAV & +RDY

—Data Valid and +Ready: These two signals supply the
MIC 112 with the necessary handshaking to determine
whether data on the +ADDR/DATA(0:19)i bus is valid
and/or has been accepted.

+M/-1I0O

+Memory/—Input/Output: This signal is used to determine
access to Memory or I/O space on the LPB 115.

—-BHE

~Byte High Enable: This signal determines when the high
byte of a two byte word is active.

-LPB ERR

—Local Processor Bus Error: This signal indicates to the
MIC 112 that an error condition has occurred on the Local
Processor Bus 115. This signal is a receive only signal and
its purpose is to end a MIC LPB Master access, which may
be in a dead-lock state, i.e., a not ready condition.

-LPM/SS84_IN

Local Processor Master/Scan String 4 Input: This signal
indicates whether the current user is a microprocessor or
another LPB device 122. The purpose of this signal is to
assist the MIC 112 in determining the correct timing and
handshaking required during LPB slave operations. In addi-
tion this signal is defined as the input for scan string 4 during
LSSD test mode.

-BUS REQ/SS3_OUT

—Bus Request/Scan String 3 Output: This signal indicates
when the MIC 112 needs to use the LPB 115 for a LPB

5,459,839

15

Master operation. In addition this signal is defined as the
output for scan string 3 during LSSD test mode.

~-BUS GNT/SS3_IN

—Bus Grant/Scan String 3 Input: This signal indicates
when the MIC 112 has acquired ownership of the LPB 115
and can perform LPB Master operations. In addition this
signal is defined as the input for scan string 3 during LSSD
test mode.

—CSEL

~Chip Select: This signal is used to enable the MIC 112
for controlled LPB memory slave operations involving
initialization register and accesses to LDB 117.

—INT(0:3)
—Interrupt Bits 0 through 3: These signals are used by the

EC 141 and/or QM 143 to request service or attention by a
LPB device.

Local Data Bus Interface

This section defines the signal /O used to interface the
MIC 112 with the LDB 117. As mentioned previously, in the
preferred embodiment, the MIC 112 conducts only master
operations on the LDB 117.

+ADDR(0:9)i

+Address bits 0 through 9: This bus is used to address
LDB and is capable of accessing 1 Mbyte of data. This bus
is a multiplexed address bus providing the ability to present
an 8-bit high address and a 10-bit low address. Together the
high and low address create a 256 4 Kbyte paging address
scheme. The —HALE signal is used to indicate when address
is defined as the high address.

+APAR(0:1)i

+Address Parity bits 0 through 1: These signals indicate
odd parity on +ADDR(0:9)i. +APAR(0)i indicates odd par-
ity on +ADDR(0:1)i, and +APAR(1)i indicates odd parity on
+ADDR(2:9)i.

+DATA(0:31)i

+Data bits 0 through 31: This bus is used to read from or
write to data on the LDB 117.

+DPAR(0:3)i

+Data Parity bits 0 through 3: These signals indicate odd
parity on each byte of the +DATA(0:31)i bus.

+R/-W

+Read/—Write: This signal indicates whether data is writ-
ten to or read from the LDB 117. This signal is valid when
either the high or the low address are valid.

—BE(0:3)i

—Byte Enable Bits 0 through 3: These signals indicate
which bytes of the +DATA(0:31)i contain valid data.
—BE(0)i enables +D(0:7)i, —BE(1)i enables +D(8:15)i,
—BE(2)i ecnables +D(16:23)i, and -BE(3)i enables
+D(24:31)i. These signals also indicate that +ADDR(0:9)i
contain the least significant 10-bits of the LDB address.

-RARBO/SS2_0OUT

-Ring Arbitration Out/Scan String 2 Output: This signal
is used to pass the LDB arbitration token to the next device
on the LDB 117. In addition, this signal is defined as the
output for scan string 2 during L.SSD test mode.

—RARBI/SS2_IN

Ring Arbitration In/Scan String 2 Input: This signal is
used to receive the LDB arbitration token. In addition, this
signal is defined as the input for scan string 2 during LSSD
test mode.

10

15

20

25

30

35

45

50

55

60

65

16

-LDB ERR

—Local Data Bus Error: This signal indicates whether an
error has occurred on the LDB 117. The current owner of the
Ring Arbitration Token must terminate any transfer on the
LDB 117 and cancel the Token when —LPB Error is active
for more than 1 cycle. When this signal is active for only 1
cycle, a parity error has been detected and the ring remains
operational.

—~HALE

—High Address Latch Enable: This signal is used to
validate +ADDR(2:9)i as the most significant 8-bits of a 1
Mbyte LDB access

-ROB

Request On Bus: This signal is used to inform the owner
of the LDB token that another LDB device 122 wishes to use
the bus 117. This signal enables the THT and TRT timers
described below.

Self Test Interface

The STI 157 provides access to the MIC’s self test
capabilities controlled by an external diagnostic device.

+A/B CLK

+A and B Clocks: These two clocks shall be used by the
MIC’s STI 157. The operating frequency of these two clocks
will be a maximum of 6.25 MHz. These signals also define
the Scan A and System B clocks for LSSD test mode.

+DIN/SS1_IN

+Data In/Scan String 1 Input: This signal provides the
MIC STI with serial input information. In addition, this
signal defines the input for scan string 1 during BSSD test
mode.

+MODE

+Mode: This signal determines whether the STI is oper-
ating in an Instruction/Status mode or Scan mode.

—SEL

—Select: This signal is used to enable STI operations.

+DOUT/SS4_OUT

+Data Out/Scan String 4 Output: The signal provides
serial output information from the STI. In addition, this
signal defines the output for scan string 4 during LSSD test
mode.

Miscellaneous

+SYS CLK

+System Clocks: These two lines provide the system
clocks needed for the MIC 112. The operating frequency of
these clocks is 25 MHz. Both signals receive equivalent
clocks. These signals also define the LSSD B and C clocks
during LSSD test mode.

+SD CLK

+Streaming Data Clocks: These two lines provide the
clocks needed for MIC Streaming Data Master transfers.
Both signals receive equivalent clocks. These signals also
define the LSSD B and C clocks during LSSD test mode.

-TEST_C

This signal is used during manufacturing tests to validate
the C clock latching capability of the internal latches.

-DI

—Drive Inhibit: This signals forces all MIC signal drivers
to a tri-stated condition. This signal should only be used for
LSSD test mode. During operational mode this signal should

5,459,839

17

be pulled up to a ‘1’ level.
+T1

+Test Inhibit: This signal sets the MIC 112 into LSSD test
mode. All internal MIC registers receive system clocks
during LSSD test mode. During operational mode this signal
should be a ‘0’ level.

+CI

+Clock Isolate: This signal defines whether the STI A
Clock signal is to be used as a scan clock or operational
clock. During operational mode this signal should be a ‘0’
level.

+8G

+Scan Gate: This signal defines the component state,
either shift or component, during LSSD test mode. During
operational mode this signal should be a ‘0’ level. +SYS
RESET

+System Reset: This signal can be driven by the System
Controller to reset or initialize MC devices, also referred to
as the MC +CHRESET. During a power-up sequence, this
signal must be active for a specified minimum time of 1
usec. This signal may be logically OR with an adapter level
reset.

Micro Channel Interface

The protocol for Arbitration, Basic Transfer, Streaming
Data, System Configuration and Steering for the MC are
described below.

Arbitration

Arbitration is the resolution of multiple bus requests,
awarding use of the bus to the highest priority requestor. The
Micro Channel arbitration scheme operates as a multi-drop
(dot-OR) mechanism. This type of arbitration scheme allows
for up to 16 participants, in an arbitration cycle, while only
using four signal lines. +ARBI(0:3)i and +ARBO(0:3)i with
assistance from some external drivers comprise the four
signals needed for arbitration on the MC 110.

The MIC 112 requests service by activating the —PRE-
EMPT signal. The system responds by raising the +ARB/
GNT when the current bus owner completes its bus activity.
The current bus owner must release control of the MC 110
no more than 7.5 usec after activation of the -PREEMPT
signal. When the system activates +ARB/GNT the device
with the highest priority gains control of the MC 110. A bus
owner may use the -BURST signal to maintain control of
the MC 110 for extended periods of time. If Fairness is
enabled, the MIC 112 can re-request the MC 110 only when
all other MC devices have had their first requests serviced.

Basic Transfers

Basic Transfer mode is the default mode for exchange of
information between MC devices. A Basic Transfer begins
when a MC master, usually the bus owner, asserts the status
lines (—S0 and —S1) and +M/IO signals, indicating the type
of operation to be performed on the MC. The MC master
also asserts +A(0:31)i, +APAR(0:3)i, APAREN, MADE24,
TR32, SBHE, and —-BE(0:3)i if required for the type of
transfer. Once the address bus is stable, the —ADL is
asserted.

All devices on the MC monitor the signals which have
been asserted by the MC master. When a device detects
addresses within a predefined range, the device becomes the
MC slave. The MC slave then asserts the —-DS16, DS32, and

10

15

20

25

30

35

40

45

50

55

60

65

18

—CD SFDBK signals as positive acknowledgement of its
selection. These acknowledgement signals are received by
the MC master as —DS16 RTN, DS32 RTN, and —SFD-
BKRTN and signify the type of MC slave and the readiness
of the MC slave for the transfer.

During a write operation the +D(0:31)i and +DPAR(0:3)i
are asserted with the -CMD signal. During a read operation,
data on the +D(0:31)i does not become valid until the MC
slave is ready, and +CHRDY is active, to send the data to the
MC master.

A MC Slave can extend a Basic Transfer cycle beyond
200 ns by asserting the +CD CHRDY signal. A MC master
can also maintain ownership of the MC by asserting the
—BURST signal. Termination of the Basic Transfer mode
and ownership of the MC 110 by the MC master occurs
when the -BURST and —CMD are inactive.

Streaming Data

Streaming Data mode begins as Basic Transfer mode
does. The MC master supplies a single address, usually the
starting address, in a range for which a MC slave will
respond to. Addresses for 16, or 32-bit are aligned on four
byte address boundaries. Addresses for 64-bit transfer are
aligned on eight byte address boundaries.

When the selected MC slave sends its positive acknowl-
edgement to the MC master, three additional signals are sent
to the MC master to indicate the MC slaves ability of
Streaming Data mode. Two of these signals, ~SDR(0:i),
determine the maximum rate at which the MC slave can
operate in Streaming Data mode. The third signal, -MSDR,
indicates the MC slaves ability to transfer data in the 64-bit
Streaming Data mode. The —CMD signal is then asserted
and held active until termination of the Streaming Data
mode. The —SD STB and +CD CHRDY are used to indicate
when data is valid during the Streaming Data transfer.

The Streaming Data mode transfer can be terminated by
either the Streaming Data master or Streaming Data slave. A
Streaming Data master can begin termination of the transfer
by deactivating the —S0,-S1 signals, the Streaming Data
slave responds with deactivating the ~SDR(0:1)/~-MSDR
signals. The termination will be complete when the Stream-
ing Data master deactivates -CMD. A Streaming Data slave
can begin termination of the transfer by deactivating the
—SDR(0:1)/-MSDR signals. The termination will be com-
plete when the Streaming Data master deactivates —S0,—S1,
and —-CMD. —SDR(0:1) will become tristated after -CMD
deactivates.

System Configuration

A System Configuration protocol is used to initialize and
read the POS registers with the MIC 112 or any other MC
device. During a System Configuration, the selected MC
device becomes a Setup slave. The System Configuration
protocol is similar to the Basic Transfer mode except for the
following modifications:

The MC device is selected using the —-CD SETUP signal
not by decoding of the address bus or arbitration.

Only the three least significant address bits are used or
decoded.

Only I/O Read/Write operations are performed.

The selected device does not assert the —CD SFDBK as
positive acknowledgement.

All transfers are single byte (8-bit) transfers, which occur
only on the least significant byte of the data bus.

5,459,839

19

A single configuration cycle is 300 ns.
Parity is not supported.

MC Steering

To maintain bus width compatibility and flexibility the
MIC 112 is able to operate in several bus width configura-
tions. Transfers which involve moving data between the
LDB 117 and the MC 110 have the capability of 64, 32, 16,
and/or 8-bits depending on the other MC device involved in
the transfer. Transfers which involve writing to or reading
from Queues located in Local Processor Store 121 have the
capability of 32, 16, and/or 8-bits. POS register transfers are
on byte boundaries only. Transfers between MC devices
utilize their maximum bus width capability whenever pos-
sible. The MIC 112 controls steering when operating as a
master. The MIC 112 controls steering when operating as a
Streaming Data slave with a Streaming Data master of lesser
width. Once a Streaming Data transfer has begun, a new
steering configuration is not possible until termination of the
current Streaming Data transfer. Table 1 illustrates the
MIC’s steering responsibilities during valid MC Master
transfers.

10

15

20

nous Channel Check except that once the MC Master has
completed the current cycle the Channel Check signal
remains active.

In either case, the Channel Check bit within POS register
remains active until the system has reset it. Resetting of a
Channel Check condition is performed using the system
configuration protocol.

Micro Channel Interface State Machine

To simplify chip designs, a synchronous method of cap-
turing and validating data on the MC 110 can be used with
minimal asynchronous clocking. By minimizing the use of
asynchronous logic, the risks involved in an asynchronous
design are reduced. Once the MC control signals and busses
are synchronized, a state machine interface can determine
the state of data and when data is valid on the MC 110. This
task can be accomplished using three areas of logic design
described in the following sections: Control and Data Signal
Capturing and Synchronization, Interface State Machine,
and Data Validation Decode logic.

In FIG. §, a somewhat more detailed block diagram of the

TABLE 1
Master Signals Slave Signals
MIC +A —BE(DS16 DS32
SBHE 29:31)i 0:3)i RTN RTN MSDR Transfer Type/Description
0 000 11 0 0 0 8 byte transfer to 64 bit slave#
0 X00 1110 X X X 1 byte transfer to all slaves
0 X00 0000 1 1 1 1 byte transfer to 8 bit slave
0 Xo00 0000 0 1 1 2 byte transfer to 16 bit slave*
0 X00 0000 0 0 X 4 byte transfer to 32/64 bit slave*
0 Xo1 1101 X X X 1 byte transfer to all slaves
1 X10 1011 X X X 1 byte transfer to all slaves
0 X10 0011 0 X X 2 byte transfer to 16/32/64 slave
0 X1 0111 X X X 1 byte transfer to all slaves
Note:

All above transfers are executed in the Basic Transfer mode, except noted.
#Capable of Streaming Data Operations only.
*Capable of both Basic Transfer and Streaming Data operations

Interrupts

The MIC 112 has the ability to source four programmable
MC interrupts, with expansion capabilities of up to eight.
These interrupts are used to inform the System Processor
that a Queue contains job(s) or command/status words for a
device on the MC 110 or for use by the System Processor or
an error has occurred. Each Interrupt may be shared by up
to four Queues. When Queues share an Interrupt a readable
register is available to assist other MC devices and/or the
System Processor in determining the Queue which caused
the Interrupt. An Interrupt may also be assigned to only one
Queue.

Errors

The MIC 112 provides a Micro Channel Check capability.
A Channel Check becomes active when the MIC 112 detects
a parity error on MC Slave writes. The Channel Check can
either be synchronous or asynchronous to the detection of
the error. The MIC default is synchronous.

The synchronous Channel Check allows the current MC
Master to receive immediate notice of a parity error detected
by the MIC 112. Once the MC Master completes the transfer
in progress the Channel Check signal becomes inactive.

The asynchronous Channel Check is similar to a synchro-

45

50

55

60

65

Micro Channel Interface 130 is depicted. As mentioned
previously, the interface 130 includes the Micro Channel
Data Interface 131, the Micro Channel Address Interface
132, and the Micro Channe! Interface Control Logic 134.
The Control and Data Signal Capturing and Synchronizing
Logic 170 is largely located in the control section 134, but
the logic devoted to capturing the data and address signals
from the Micro Channel 110 are located in the data interface
131 and address interface 132 respectively. The Interface
State Machine 172 is also part of the interface control
section. 134 and uses the synchronized signals from the
capture logic 170 to derive a synchronous means of evalu-
ating the state of the Micro Channel 110. Finally, the Data
Validation Decode Logic 174 takes signals from the capture
logic 170 and the state machine 172 to determine whether
the asynchronously latched data and address signals cap-
tured from the Micro Channel 110 represent valid data in a
synchronous manner.

To capture the asynchronous MC data and control, tech-
niques consistent with the LSSD guidelines are employed.
These techniques include the capturing of narrow bus
strobes, sampling, and synchronizing. LSSD circuits follow
the rules generally described in U.S. Pat. Nos. 3,761,695,
3,783,254 and 4,580,137. In addition, U.S. Pat. No. 4,580,
137 which claims a latch circuit for synchronous and asyn-
chronous clocking also contains an exceptionally complete

5,459,839

21

review of the various aspects of LSSD latch design. While
other LSSD compatible circuits may be employed to capture
the MC control and data signals, the figures on the following
pages illustrate the best logic known to the inventor for
capturing the MC control and data signals.

For quick reference to FIGS. 6A through 6E, Table 2

contains the definitions of the signals portrayed in these
figures.

Referring to FIG. 6A, the logic for capturing the asyn-
chronous data valid signal, -CMD, which is the Micro
Channel signal which indicates when data is valid on the
Micro Channel is shown. Two synchronous internal signals
are generated by this logic: +CMDA, which indicates when
an active high level signal was present on the -CMD signal,
and +CMDB, which indicates when an active low level
signal was present on the —~CMD signal. Both the +CMDA
and +CMDB signals are used in the state machine signals
from the Micro Channel 110.

The circuit elements in the upper half of the diagram 180
which produce the +CMDA signal are essentially equivalent
to those in the lower half 182 which produce the +CMDB
signal with the exception that the —CMD signal from the
Micro Channel 110 is inverted before being received by
block 182. The circuit shown is useful for capturing a signal
which is narrower than one system clock cycle of the
internal clocks of the MIC 112.

In FIG. 6A, the registers 183, 184, 185, 186 are two
latches in series, the first latch receiving the asynchronous
signal and the first clock signal and the second latch receiv-
ing the output of the first latch and the second clock signal.
In this way, the asynchronous signal is sampled in the first
latch, waiting for any metastability to settle out, and then
setting the value from the first latch into the second latch.
The second latch contains the synchronized signal which can
be used in the LSSD chip. If the ~CMD signal were wider
than the internal clock signals +C, +B of the MIC 112, only
registers 184 and 186 would be necessary to provide syn-
chronized signals +CMDA, +CMDB. However, it is more
likely that the -CMD signal will be narrower, so registers
183 and 185 which are clocked by internal test clocks +T1,
+T2 and their attendant AND, OR and feedback loops are
necessary to capture the -CMD signal and its inverted signal
and hold them until they can be synchronized by registers
184 and 186.

Referring to FIG. 6B, the logic for capturing the asyn-
chronous streaming data signal, —~SD__STB, from the Micro
Channel 110 which is used to clock data during a streaming
data transfer to the MIC 112. Two synchronous signals are
produced: +STRA, the internal chip signal which indicates
when an active high level has been captured in the —SD__
STB signal, and +STRB which indicates when an active low
level has been captured on the —SD__STB signal. +STRA
and +STRB are produced by registers 193 and 194 in block
190 and registers 195 and 196 in biock 192 respectively. The
logic is essentially equivalent as that depicted in FIG. 6A for
the —CMD signal.

In FIG. 6C, the logic for producing the internal signals for
the Micro Channel bus status, —S0/-S1__I and that indicat-
ing the MIC 112 has been selected as a Micro Channel Slave,
+MC__SLAVE. Both of these signals use the —ADL signal
from the MC 110 via multiplexor 200 as the second “clock”
signal in register 202 which results in the signals being
asynchronously latched. This technique is used because
there is not time to synchronize the —~SDL and —S0/-S1
signals. Register 202 represents a simplification of the actual
logic in that two separate registers are used to capture the

20

25

35

45

50

55

60

65

22

—S0/-S1 and slave decode signals both of which comprise
two latches, the first of which uses a test clock to sample the
data waiting for any metastability to settle out, the second of
which using the asynchronous —ADL signal as the “clock™
signal. The slave decode logic 204 uses the MC address bus,
M/IO, and status signals to determine whether the device is
being selected by the current MC Master. The +LSSD__
TEST_EN and +B clock signals are used for LSSD test
operations on the logic.

The logic for capturing the asynchronous data, address
and +RDY__ -RTN signals from the Micro Channel 110 is
portrayed in FIG. 6D. The -SD__STB and —-CMD signals are
passed through the multiplexor 210 to register 212 which
produces asynchronously latched data, address and +RDY_
RTN signals usable in the MIC 112. Similar to register 202
in FIG. 6C, register 212 is a simplification of three separate
registers used for the three asynchronous signals from the
MC 110. The logic also produces a synchronized signal
corresponding to +RDY_ RTN with register 214 using inter-
nal clocks +C, +B. Internal clock signals +C, B and the
+LSSD__TEST__EN signal are connected to inputs of mul-
tiplexor 210 to test the logic according to LSSD operations.

FIG. 6E depicts the logic for capturing data and address
buses from MIC 112 to the Micro Channel 110. Data and
address are captured in register 230, clocked by the remain-
ing clock decode logic shown in FIG. 6E. Multiplexors 220,
224, and 226 provide selectability between operational
clocking and LSSD test clocking for registers 222, 228, and
230. Registers 222 and 228 clocked operationally by
SD_STB together with the three attendant XOR gates,
provide the proper clocking control and timing necessary to
ultimately clock data and address into register 230 and onto
the Micro Channel 110. During idle times on the Micro
Channel 110, ~CMD provides a reset to registers 222 and
228 so that the control logic is set in a known state awaiting
the next data transfer. The attending OR gate with +64__
SD_EN and +RDY_RTN, provide additional clocking con-
trol during a 64-bit Streaming Data Transfer and data pacing
during a 16- or 32-bit Streaming Data Transfer. These
transfer types are described in more detail in the referenced
Micro Channel Architecture documents. Finally, the AND/
OR gates providing input to multiplexor 220 allow selection
by +MC__MASTER of separate ready controls during MC
Master (+MASTER_RDY) and MC slave (+SLAVE__
RDY) operations completing the clock decode necessary to
capture data and address into register 230.

TABLE 2

Signal Definition

Signal Name

-CMD The MC signal used to indicate when data
is valid on the MC.

The internal chip signal which indicates
when an active high level has been cap-
tured on —CMD signal.

The internal chip signal which indicates
when an active low level has been cap-
tured on —CMD signal.

Internal system and LSSD clocks. +C
control the L1 portion of the register and
+B controls the L2 portion of the
register.

Internal LSSD clocks. These clocks are
held active during non-LSSD operations.
+T1 controls L1 portion of the register
and +B controls the L2 portion of the
register.

The MC signal used to clock data during
a Streaming Data (SD) transfer. This

+CMDA

+CMDB

+C /+B

+T1/+T2

SD_STB

5,459,839

23

TABLE 2-continued
Signal Definition

Signal Name

signal is sent by the MC Master and is
received by the selected MC Slave
device.

The internal chip signal which indicates
when an active high level has been cap-
tured on the -SD__STB signal.

The internal chip signal which indicates
when an active low level has been cap-
tured on the -SD__STB signal.

The MC signals used to indicate bus
status.

The internal and asynchronously latched
input status.

The MC signal used to latch and valid
MC address.

This signal indicates when LSSD opera-
tions are active and selects the proper
clocks for the data registers.

The MC 32-bit Data Bus plus byte parity.
The internal and asynchronously latched
input data bus plus byte parity.

The internal synchronous output data bus
plus byte parity.

The MC 32-bit Address Bus plus byte
parity.

The internal and asynchronously latched
input Address Bus plus byte parity. This
bus is only valid for Streaming Data
operations.

This signal indicates when the chip acting
as a MC Master is ready to begin writing
data words onto the MC.

This signal indicates when the chip acting
as a MC Slave is ready to begin placing
read data words onto the MC.

This signal indicates when the chip is a
MC Master.

This signal indicates when the chip has
been selected as a MC Slave.

This signal is received by the MC Master
and indicates the ready condition of the
selected MC Slave.

The asynchronously latched
+RDY__RTN signal, used internally to
validate the data bus.

The synchronously sampled and latched
+RDY_ RTN signal, used internally to
determine the ready condition.

This signal indicates when a 64-bit
Streaming data transfer is in progress.

+STRA

+STRB

S0/~-81

~S0/~81_1

—-ADL
+LSSD_TEST_EN
+D(0:31)/P
+D(0:31)/P_I
+D(0:31)/P_O
+A(0:31)/P

+A(0:31)/P_1

+MASTER_RDY

+SLAVE_RDY

+MC_MASTER
+MC_SLAVE

+RDY__RTN

+RDY_RTN_A

+RDY_RTN_S

+64_SD_EN

Once the proper Micro Channel 110 and internal signals
have been generated, the current state of the Micro Channel
110 can then be determined using a synchronous state
machine design. FIG. 7 illustrates the MC Interface State
Machine 172. For quick reference to the state machine 172,
Table 3 contains the State transition equations. The defini-
tions of the states are contained in Table 4.

The state machine 172 begins in State_ 0 which means
that the MIC 112 is not active on the Micro Channel 110.

If equation b in Table 3 is satisfied, the state machines
goes from State_ 0 to State__1, which means that the ~-CMD
signal on the Micro Channel 110 has gone active low and the
chip will be receiving data from the Micro Channel 110
using either a basic or streaming data transfer. The -CMD
signal is used to indicate when data is valid on the Micro
Channel 110. If, on the other hand, equation c in Table 3 is
satisfied, the state machine goes to State_3, which means
that both the -CMD and the —~SD__STB signals have gone
active low and that MIC 112 will be receiving data from the
Micro Channel 110 using a streaming data transfer. The
—~ST_STB signal is a Micro Channel 110 signal used to

10

15

20

25

30

35

40

45

50

55

60

65

24

clock data during a streaming data transfer. The signal is sent
by the master on the Micro Channel 110 and received by the
slave device on the Micro Channel 110. If on the other hand,
equation d is satisfied, the state machine goes from State_ 0
to State__5 which means that -CMD has gone active low and
the chip will be presenting or has already presented valid
data on to the Micro Channel 110. Also, the +RDY__RTN
signal is in active low indicating that the Micro Channel 110
is in a not ready condition.

If equation e in Table 3 is satisfied, state machine goes
from State_ 0 to State_ 6 which means that the —-CMD
signal has gone active low and the chip will be presenting or
has already presented valid data on to the Micro Channel 110
and the +RDY__RTN signal is active high indicating that the
Micro Channel 110 is ready for data transfer. The state
machine will go from State_ 0 to State_7 if equation f is
satisfied. In State__7, the ~CMD and —ST__STB signals have
gone active low and data is presented by the MIC 112 on to
the Micro Channel 110 for a streaming data transfer.

State_ 4 is reached from State_ 3 if equation k in Table 3
is satisfied. In State_ 4, the —ST__STB signal has gone active
high and the chip is waiting for valid data to be latched in.
State__8 is reached from State_ 7 when equation w in Table
3 is satisfied. In State_ 8 the —ST__STB signal has gone in
active high and the chip is waiting for the next valid to be
clocked out on to the Micro Channel 110. Other transitions
and points of stability are described by the equations in
Table 3 in conjunction with FIG. 7. For example, as long as
equation a is satisfied, the state machine will remain in
State_ 0 which means that the MIC 112 is not active on the
Micro Channel 110. The state machine is used with standard
components such as a register and associated logic for each
of the eight states in the state machine. In the state machine,
States_1, 3 and 4 define data states in which the MIC 112
will be receiving data from the Micro Channel 110 and
States_5, 6, 7 and 8 define data states in which the MIC 112
will be transmitting data on the Micro Channel 110.

TABLE 3

State Machine State Equations

@ = Reset
a=State_0 & b& c& d& e&f
b = State_ 0 & +CMDB & +STRB&
[(+MC_SLAVE & -S0_1I) / (+MC_MASTER & -S1_1)]
¢ = State_ 0 & +CMDB & +STRB &
[(+MC_SLAVE & -80._1)./ (:MC_MASTER & -81_1)]
d = State_0 & +CMDB & +RDY_RTN_S&
[+MC_SLAVE & -S81_1)./ (+MC_MASTER & -50_1)]
e = State__0 & +CMDB & +STRB& +RDY_RTN_S &
[+MC_SLAVE & -S1_1)/ (+MC_MASTER &
—80_1)]
f= State_ 0 & +CMDB & +STRB & +RDY_RTN_S &
[(+MC_SLAVE & —S1_1I)/ (+MC_MASTER & -S0_I)]
g = State__1 & +CMDA & +STRB
h = State_ 1 & +CMDA& +STRB
i=State_1 & +CMDA& +STRB
j = State_3 & +STRA
k = State_3 & +STRA
1= State_ 4 & +CMDA & +STRB
m = State_ 4 & +CMDA& +STRB
n = State_ 4 & +CMDA& +STRB
o = State_5 & +CMDA
p = State_ 5 & +RDY_RTN_S& +CMDA
q = State_5 & +CMDA& +STRB& +RDY_RTN_S
r = State_ 5 & +CMDA& +STRB & +RDY_RTN_S
s = State_ 6 & +CMDA & +STRB
t = State_ 6 & +tCMDA& +STRB
u = State_6 & +CMDA& +STRB
v = State_ 7 & +STRA
w = State_7 & +STRA

5,459,839

25

TABLE 3-continued

State Machine State Equations

x = State__8 & +CMDA & +STRB
y = State_ 8 & +CMDA& +STRB
z = State_ 8 & +CMDA& +STRB

& denotes a logical AND operation
/ denotes a logical OR operation

TABLE 4

State Definitions

State__0 = The chip is currently not active on the MC.

State__1 = The MC —CMD has gone active low and the chip
will be receiving data from the MC using either a Basic or
Streaming Data transfer.

State_ 3 = The MC —CMD and —SD__STB have gone active

low and the chip will receive data from the MC using a Streaming
Data transfer.

State__4 = The MC —SD__STB has gone inactive high and the
chip is waiting for valid data to be latched in.

State_ 5 = The MC —CMD has gone active low and the chip
will be presenting or has already presented valid data onto the
MC. The MC +RDY_RTN signal is inactive low indicating a
not ready condition.

State_6 = The MC —CMD has gone active low and the chip
will be presenting or has already presented valid data onto the
MC. The MC +RDY_RTN signal is active high indicating a
ready condition.

State_7 = The MC —CMD and ~SD__STB have gone active

low and valid data is presented onto the MC for a Streaming Data
transfer.

State_ 8 = The —SD__STB has gone inactive high and the chip is
waiting for the next valid data to be clocked out.

Finally, decoding the state machine, data validation can be
achieved in a synchronous manner. This will then allow
processing of data without the use of any further asynchro-
nous logic of timing. The decoding equations and definitions
are listed below.

BTDAV=g & +RDY_RTN_A

SDDAV=[m/1] & [+RDY_RTN_A/+64_SD_EN]

SDGND=f/r/u/ly & (+RDY_RTN__A/+64_SD_EN)]

The BTDAV signal indicates that the chip has received
and latched valid data during a MC Basic Transfer cycle.
The +D(0:31)/P_1I bus is now valid. The SDDAV signal
indicates that the chip has received and latched valid data
during a Streaming Data cycle. The +D(0:31)/P_I and
+A(0:31)/P_1I are now valid. The SDGND signal indicates
that valid data has been transferred and taken on the MC
during a Streaming Data transfer. New data can be fetched
and presented on the +D(0:31)/P_O and +A(0:31)/P__O
busses on the following clock cycle.

As shown above, the capturing logic, state machine, and
decode logic together can provide a reliable method for
interfacing with and determining the state of the Micro
Channel as well as satisfying LSSD rules and requirements.
In addition, internal chip designs are simplified by the
minimal use of asynchronous logic and control within the
chip.

Micro Channel Timing

Timing diagrams for Micro Channel Basic Transfer,
Streaming Data, arbitration and parity timing functions can
be found in Personal System/2 - Hardware Interface Tech-
nical Reference - Architecture, Order No. 84F9808, Form
No., S84F-9808-00, by the IBM Corporation and is hereby
incorporated by reference.

10

15

20

25

30

35

40

45

60

65

26

Local Processor Bus Interface

The MIC 112 arbitrates for the LPB 115 by activating the
~BUS REQ signal. Once the MIC 112 detects that the -BUS
GNT signal has gone active (low), the MIC 112 will become
the master and continue to assert ~BUS REQ active.

Once the master, the MIC 112 will not release ownership
until it detects: either -BUS GNT has gone inactive OR the
MIC 112 no longer needs the bus. When the MIC 112 detects
that it should give up ownership of the bus, -BUS REQ will
become inactive (high). This indicates that the MIC 112 is
currently performing its last access.

Once the MIC 112 has made its -BUS REQ inactive the
MIC 112 will not request the LPB 115 back until it detects
that —-BUS GNT has gone inactive. This allows no time
restrictions on the external LPB arbitration logic to make
—BUS GNT inactive relative to the MIC making ~BUS REQ
inactive.

Master Operations

When the MIC 112 gains ownership of the LPB 115 the
MIC 112 becomes a LPB master. As a master, the MIC 112
is able to read/write data to and from the LPS. The MIC 112
as a LPB Master will always perform word (2 byte)
accesses.

The MIC 112 begins master operations by supplying an
address on the +ADDR/DATA(0:19)i. This address is then
latched by the —ALE signal. Once the address is latched, the
+ADDR/DATA(0:19)i bus can be used for the transfer of
data. The +M/-10O signal determines whether the address is
in the memory space or I/O space of the LPB 115. The +R/W
signal determines the direction the data will flow on +ADD/
DATA(0:19)i. Data transfers only utilize the lower 16-bits of
+ADDR/DATA(0:19)i. Odd parity for +ADDR/
DATA(0:19)i is generated/received on +A/D PAR(0:2)i.

The ~DAV and +RDY signals are used for handshaking
and validation during the data transfer. -DAV, sourced by
the LPB Master, becomes active when valid data exists on
+ADDR/DATA(0:19)i bus. +RDY, sourced by the LPB
Slave, is used to inform the MIC that a LP device is
ready/not ready to receive data during a write or send data
during a read.

LPB Slave Operations

The MIC 112 becomes a LPB slave when —CSEL is active
and/or a predefined address has been decoded. When the
MIC 112 is a slave, a LPB device 119, 122 has the ability to
access additional resources, such as initialization registers,
direct access to the LDB 117, and the Queue Printers. —ALE
and +R/W become inputs controlled by the LPB device.
—DAYV becomes an input representing when valid data is to
be written or when the master is ready to accept read data.
+RDY becomes an output from the MIC 112 validating a
write or read data to the LPB device. MIC Slave accesses to
the Initialization and Control register must be on a word (2
byte) boundary. LDB window accesses may be on 1 or 2
byte boundaries.

Interrupts

The MIC 112 supplies four programmable interrupts,
—INT(:3). These interrupts inform a LPB 119, 122 device
that a queue which the MIC 112 is managing contains a
job(s) or an error has occurred. The MIC 112 provides a
readable register to indicate the status of jobs within the
Queues. An interrupt is cleared by either removing all jobs

5,459,839

27

from a Queue or clearing the error condition.

Errors

All errors detected by the MIC 112 on the LPB 115 are
indicated by an interrupt. An error interrupt can be generated
by a USW being posted to a Queue or if a Queue error occurs
via the Queue error register.

The LPB Error signal is used to clear the MIC 112 of a
hang condition. If the MIC 112 is a LPB Master and the
slave device does not respond with a ready condition, then
the LPB error should be used to allow the MIC 112 to
terminate the current transfer. If the LPB Error signal
becomes active then a USW is posted. The MIC 112 only
receives the LPB Error signal, the MIC 112 never drives it.

Local Processor Bus Timing

FIGS. 8 through 11 illustrate LPB timing for slave and
master operations. The following conventions were used in
FIGS. 8 through 11, depicting the LPB Timing diagrams:

First, data was skewed in relation to the rising edge of the
system clock to illustrate which edge the MIC 112 uses to
send and receive data. When the MIC 112 drives the signal,
the data is shown to change slightly after the rising edge of
the clock. When the MIC 112 is receiving the signal, that
data is drawn such that it is stable around the rising edge the
MIC 112 will clock it on. Second, the right hand column of
each timing diagram lists who is controlling the signal
(M=master, S=slave, A=arbitration logic, and m=not driven
by MIC 112 when master, controlled externally). Third, the
dashed line represents a pull-up holding the signal high
while it is not being driven. Fourth, with the exception of the
—ALE which is always valid, any signals sent to the MIC 112
during an access is in a don’t care state in those cycles where
the dashed line appears. Any signal the MIC 112 controls
during that access may require the pull-up to hold it active
(i.e. 4RDY). Fifth, ’ at the top of the diagrams represents
the clocking edge for the MIC 112.

Local Data Bus Interface

Referring to FIGS. 2 and 3, the LDB interface 137 is a 100
MB interface that is designed to handle high speed data
transfers between LDS memory 123 and any device con-
nected to the LDB 117. The data bus shall consists of 32 bits
of data with 4 bits of odd byte parity. The address bus shall
consist of 10 bits of address and 2 bits of odd parity. The
address bus 137 allows for the access to an address range of
1 MB by using a page address scheme that consists of an 8
bit high address (HA) followed by a 10 bit low address along
with four byte enables.

Arbitration on LDB 117 is accomplished by the use of a
one-bit token ring protocol. This protocol allows for mul-
tiple LDB devices, programmable time sharing among the
LDB devices, minimal latency during passing of bus own-
ership, parity and protocol error detection, and error recov-
ery. Also included is an error signal called LDB_ Err and a
request signal called LDB_ ROB.

Referring to FIGS. 12 and 13, several signals are used for
the 1-bit token ring protocol used on the LDB 117. In FIG.
12, a two-chip ring is depicted. Chips 1 and 2,240 and 242,
depicted generally in the figure, are the MIC 112 and the
serial Interface 113 respectively. As shown in FIG. 13, the
protocol connections can be extended for a multi-chip ring
with the same number of I/O signal connections which
allows other devices 124, 125 coupled to the LDB 117 to act

20

25

40

45

50

55

60

65

28
as the LDB master.

To accommodate multiple users on the LDB bus 117, the
protocol signals are coupled such that the RARBI and
RARBO form a ring 244 for the token to rotate on while the
LDB_ ROB 248 and LDB_Err 246 signals are hooked to
form a hardwired dot OR function. Unlike typical token
rings, the ring 244 of the present invention is used for
arbitration only. The lines dedicated to the LDB 117 are
separate from those used for the ring 244 and ROB 248 and
error 246 signals.

Positive logic is used to define the active levels of the /O
signals. The RARBI(L) signal, or Ring Arbitration In signal,
is an input to the chip which is used to receive the token
when passed from another user on the ring. The RARBO(L)
signal, or Ring Arbitration Out signal, is an output from the
chip which is used to send the token to the next device on
the ring. Both the RARBI and RARBO signals are passed on
the ring 244. In the preferred embodiment, the token appears
as a 1 cycle active low pulse. The LDB__ ERR(L) signal 246
is a bidirectional signal which indicates that there is an error
on the LDB 117. In the preferred embodiment, the driver
type is open collector with a pull-up resistor external to the
chip. This signal is to indicate to all ring participants that an
error has been detected on the ring. The severity of the error
is preferably indicated by the number of cycles the Bus Error
signal 246 is held active. The Bus Error signal is active low.

The ROB(L) signal, or Request to Own the Bus signal,
248 is also bidirectional. In the preferred embodiment, the
driver type is an open collector with a pull-up resistor
external to the chip. The purpose of this signal is to notify
the current device holding the token that another device is
waiting to use the bus. The current holder of the token uses
the ROB signal to enable its internal counter which indicates
how long it can hold the token. All other devices use the
ROB line on the LDB 117 to enable an internal counter
which indicates how long it should take for the token to
rotate around the ring.

Each ring member 240, 242 may contain two timers.
These two timers allow for programmable bus arbitration
latencies. The rate and implementation of these timers may
be determined by the designer, system environment, and/or
chip clock rate. The Token Hold Timer (THT) defines the
maximum time that a device may hold onto the arbitration
token. The Token Rotation Timer (TRT) defines the maxi-
mum time between the release of the token to receiving the
token back.

The TRT may be defined as illustrated in the equation
below:

TRT(X)>=Q+2N —THT (X)+_THT(1)+. . . THT (N)_, where N
>=1

Q=Time delay constant determined by the environment.

2N=N is the number of chips in the 1-bit Token Ring. The
multiplication factor of 2 represents the two registers in the
token path per device, namely TokIn and TokOut.

X=The chip being designed.

With the use of the LDB_ROB line, each chip can
provide an enable for incrementing its THT and TRT timers.
If the LDB__ROB signal does not become active, the token
can be held by a chip accessing the bus for as long as it needs
it because the THT timer is not enabled. Once the LDB__
ROB line becomes active, the chip holding the token has
until its THT timer expires before it must release the token.

Only those bus participants with a high potential demand
for the shared bus resource need the Token Hold Timer. The
timer is not needed for the chips which will only hold onto

5,459,839

29

the local data bus 117 for a short period of time. Also, only
one ring member needs the Token Rotation Timer to detect
the lost token condition in the ring 244.

As all bus members participate in the arbitration of access
to the LDB 117, fairness is inherently provided. Further, the
ROB signal 248 helps improve the efficiency of the LDB 117
as a processor need not relinquish control unless another
processor requires the resource as well as providing bus
monopolization.

The Ring state machine consists of 4 basic states: Ring
Down (RD), Idle (Id), Token Master (TM), and the Error
Detected (ED) state. Each LDB ring device should follow
the state transitions shown in FIG. 14. The LDB ring state
machine controls initial start-up, arbitration, and error recov-
ery. FIG. 15A also shows the boundary logic the MIC 112
uses to interface the ring state machine to the LDB control
signals. All ring devices should have a two cycle delay from
their RARBI to RARBO to ensure proper removal of the
token when the ring goes down. Active levels of signals in
the following figures are represented by a “(H)” or “(L)”
suffix. Active and Inactive states of signals are represented
by the lack of an overscore (active) or the presence of an
overscore (inactive).

FIG. 15B illustrates the implementation of the logic for
the two timers, the Token Hold Timer (THT) and the Token
Rotation Timer (TRT). Every high demand bus member
must have the THT to determine how long after the ROB
signal is received it can maintain control of the bus. At least
one bus member must have the TRT to detect a lost token
condition on the ring. As shown in FIG. 15B, the current
register/counter is loaded with the inverse of the THT or the
TRT. When enabled, the current register/counter counts up
until it contains all 1’s and generates a carry out. As shown,
the signals to the multiplexer are controlled by the states and
other signals generated by the state machine and associated
logic in FIGS. 14 and 15A.

System reset is required to initialize all devices into the
Ring Down state. Prior to the ring start up, each device
should have its TRT and THT values initialized. Once all
members of the LDB 117 have been initialized, one chip on
the ring must be made the Ring Master. The Ring Master is
responsible for initiating a new token when the ring is down
and all LDB 117 error conditions have cleared. Once the
token is initiated onto the ring, it will be received and passed
by each device until it makes one full revolution. This initial
revolution will bring all chips into a Idle State. There should
never be more than one token rotating around the LDB ring.
In one preferred embodiment, the MIC 112 is the Ring
Master.

Once in the Idle State, a device is free to activate the
LDB_ROB line in an effort to gain ownership of the LDB
117 by capturing the token. Once a device detects the token,
the device should transition to the Token Master State. If,
while waiting in the Idle State the TRT expires, that device
should activate the error signal and transition to the Error
Detect State.

Once a device enters the Token Master State, it can either

‘pass the token on to the next device or hold onto it. If the
device holds onto the token, it is free to access LDS 123,
While in the Token Master State, the device should incre-
ment its THT whenever it detects the LDB ROB signal is
active. Once this timer expires, the Token Master must finish
its access, release the token, and go back to the Idle State.

An LDB ring device enters the Error Detect state when-
ever that device detects that there has been an error in the
LDB protocol. The two basic conditions that will cause this
transition are a lost token, i.e., TRT expires, or the detection

10

15

20

25

30

35

40

45

50

55

60

65

30

of a second token on the ring. If either of these conditions
exist, that device should activate the LDB__Err signal for at
least two comsecutive cycles which will send all the LDB
devices into the Ring Down State.

All ring devices will enter a Ring Down state upon
detecting that the LDB_ Err signal has gone active for at
least two consecutive cycles. In this state, each device will
discard any tokens that they receive while the Bus Error line
is still active. Once the Bus Error line goes inactive, the
device enabled as the Ring Master should re-initiate the
token to start the ring back up.

The local processor that is handling error recovery has the
capability of controlling the restart of the ring after it goes
down. If the processor wants the ring to automatically restart
once the error has cleared, it should leave one device in the
ring initialized as the Ring Master. If the processor wants to
prevent the automatic restart, it should first activate one
device as the Ring Master for initial start up, and then
deactivate that device as the Ring Master.

Upon detecting an error, a device can notify the other ring
devices that an error has occurred by activating the Bus
Error line. Any device not activating the LDB_ Err signal
can determine the severity of the error by detecting the
number of consecutive cycles the Bus Error signal is active.
There are are two categories of errors defined on the LDB:
1) non-recoverable, 2) recoverable.

Non-recoverable errors are errors that require the ring to
be brought down and restarted due to protocol errors such as
a lost token or the detection of two tokens on the ring. The
non-recoverable error conditions are detected when the Bus
Error line is active for at least two consecutive cycles. Once
the token has been passed to the next device on the ring, the
TRT value is loaded into a counter. This counter should be
enabled when the LDB_ ROB signal is active. If the token
does not return by the time the TRT counter has expired, the
device should activate the LDB_ Err signal for at least 2
cycles signifying a non-recoverable error. Another non-
recoverable error is when a device finds two tokens: If a
second token is detected while a device is holding the token,
the device should activate the LDB_ Err signal for at least
two cycles signifying a non-recoverable error.

Recoverable errors are errors which have not damaged the
protocol on the ring, thereby not requiring the bus to be
brought down and restarted. Recoverable errors should be
detected by a device that is in the Idle State and is moni-
toring the LDB data transfer of the current Token Master.

The MIC 112 will monitor other devices for two types of
recoverable errors: Address parity errors on a read opera-
tions, and byte enables (BE(0:3)) being active while HALE
is active. The MIC 112 will activate the LDB__Err signal
while in the Idle State for each recoverable error it detects
from the Token Master. This may cause the the MIC 112 to
activate the LDB_ Err signal for at least two consecutive
cycles should the Token Master continue to perform
accesses that have either of these errors.

Upon detecting the LDB__Err(L) active for one cycle the
Token Master has the option of continuing or releasing the
token to the next device. If the Token Master detects the
LDB__Err active for 2 consecutive cycles it must finish its
LDB access and enter the Ring Down State.

The purpose of the LDB_ROB signal is to give the
current Token Master an indication as to whether a second
ring device is waiting for access to the LDB 117 or LDS 123.
This signal should be used by the Token Master to enable its
THT and by the devices in the Idle State to enable their TRT
signal.

There is no restriction on what cycle a device activates
and deactivate the LDB_ ROB line as it transitions through

5,459,839

3

the ring state machine and in fact the signal can be perma-
nently tied to ground. This of course would not provide the
most efficient use of the bus, since a device may be forced
to give up the token when no other devices needed the bus.

The following guidelines can be used for activating
LDB__ROB which will make the most efficient use of LDS
123. These are also the rules the MIC 112 uses in its
preferred embodiment. Once a device determines it needs
the LDB 117 and the token is not currently in its boundary
in register (TokIn(L)), it should drive the the LDB_ ROB
signal active in the following cycle. If the token was
currently in the boundary in register then the device should
capture the token and not drive the LDB_ROB signal
active. Once a device which is currently activating the
LDB_ROB signal receives the token in its boundary in
register (TokIn(L)), it should stop driving the LDB_ROB
signal in the following cycle. The LDB_ROB signal may
remain active due to a second device. Once a device in the
Token Master state is forced to release the token due to its
THT expiring, it may cause the LDB_ ROB signal to go
active the cycle after the token was in its boundary out
register (RARBO active) if it wants to gain the token back.

FIG. 16 shows the timing of the MIC 112 starting up the
ring on the LDB 117 with another device from the Ring
Down state. In this example, the MIC 112 is the Ring Master
and also performs an LDB access as soon as the bus is up.
Note that the token should rotate once around the ring before
any device should capture it in order to gain access to the
LDB 117.

Whenever the LDB__Err line goes active for at least two
consecutive cycles it is the responsibility of each device to
detect the old token and discard it once in the Ring Down
State. This window of time in which each device discards the
old token must be followed by each device so that each
device can determine the difference between the old token
that was stripped and the new token which brings the ring
back up. The window for stripping the token while in the
Ring Down state is defined in the equation for Take Token
in FIG. 15A.

The earliest point in which the Ring Master can inject the
new token on the ring is included in the equation for the
Inj_ Token(L) signal in FIG. 15A. It is preferred that one
device have the capability of becoming the Ring Master. If
multiple devices have the capability of issuing a token, then
two tokens could be put on the bus if software mistakenly
initialized the ring 244 to have two Ring Masters. This
condition would be detected but possibly after two devices
both tried to drive the LDB 117.

LDB Data Transfers

Once a LDB device has gain ownership of the LDB 117
by becoming the Token Master, it is free to transfer data to
and from the LDS 123 until it gives up its ownership. Each
device on the LDB 117 can access the Local Data Store 123
using the following signals: ADDR(0:9), APAR(0:1),
DATA(0:31), DPAR(0:3), ~HALE,+R/W, and —-BE(0:3).

Addressing on the LDB 117 uses a paging scheme that
involves an 8-bit high address (HA) and a 10-bit low address
(LLA) sent across the ADDR(0:9) bus which allows for
addressing of up to 1 Mega Bytes. The HA only needs to be
sent when a new 4 MB segment is to be accessed.

Whenever a device puts out a HA on the ADDR(0:9) bus,
the HALE(L) should be active, the R/~W should be valid,
the byte enables BE(0:3)(L) should be inactive, the data bus
should be tri-stated, and all 10 bits of address should be
driven with good parity even though only the least signifi-

10

15

20

25

30

35

40

45

50

55

60

65

32
cant 8 bit of the HA are used.

Whenever a device puts out a LA on the interface, the
HALE(L) should be inactive, the R/~W should be valid, at
least one of the BE(0:3)(L) should be active, the
DATA(0:31) should contain the write data with good parity
if it a write, and all 10 bits of address should be driven with
good parity.

To enable LDB devices to exchange ownership of the
LDS 123 without interfering with each others accesses, the
following relationship should exist between the cycle the
token is captured and released, and the cycle in which the
LDB address, data and control signals are driven and
released as shown in FIG. 17. This relationship will provide
for one dead cycle on the LDB 117 during the exchange of
ownership.

The MIC 112 shall maintain maximum LDB bandwidth
by making efficient use of LDB 117 as the LLDB master and
minimizing the bus latency during the exchange of owner-
ship with another device. It is recommended that all devices
on the LDB 117 follow the timing relationship of the MIC
112 to preserve the maximum bandwidth of the LDB 117.
The timing specified together with the rule for putting out
the HA relative to detecting the token will ensure that the
latency in passing the ownership of LDB 117 is minimized
while always keeping one dead cycle on all shared LDB 117
signals during the exchange. The MIC 112 determines its
last access by checking the state of the THT and LDB_ ROB
when it is preparing to put a LA on the interface the
following cycle.

The MIC 112 shall not stop the token from propagating
onto the next device unless it has an immediately need for
LDS 123.

If the MIC 112 needs to take the token in order to access
LDS 123, the MIC 112 shall drive its HA on the interface the
cycle after it detects the token in.

When the MIC 112 is the LDB master, it shall release the
token relative to its last bus operation in such a manner that
it minimizes bus latency when passing the ownership to the
next device.

When the MIC 112 is a master and the last operation is a
write, the MIC 112 will have the token on the interface in the
same cycle the last write LLA is on the interface as shown in
FIG. 19.

When the MIC 112 is a master and the last operation is a
read and the MIC 112 is programmed for O wait states, the
MIC 112 will have the token out on the interface one cycle
after the last read LA is on the interface as shown in FIG. 18.

When the MIC 112 is a master and the last operation is a
read and the MIC 112 is programmed for 1 wait states, the
MIC 112 will have the token out on the interface one cycle
after the last read LA is on the interface.

‘When the MIC 112 is the LDB master, it preferably drives
HALE(L) and the BE(0:3)(L) inactive (high) before tri-
stating them. This means that the pull-ups on the module are
not required to pull these signals back inactive in one cycle
but just for holding then inactive once the MIC releases
them. '

After a HA has been driven with the R/~W signal high, an
LDB master read access is triggered when an LA is sent with
at least one BE(0:3) active and the R/~W line high. The
master can pipeline its reads by sending a series of read LA.

The MIC 112 was designed to perform LDB 117 reads
with either 0 or 1 wait state. This enables the MIC 112 to be
used in various applications that use RAMs with different
access times. The number of wait states the MIC 112 will

5,459,839

33

perform should be set during initialization by writing MIC
LPB memory register x1006 (DBW, bit 13). If the MIC 112
is programmed for O wait states, then it will put its LA on the
interface for one 25 MHz cycle and expect the read data to
be on the LDB interface 135 two cycles later. If the MIC 112
is programmed for 1 wait states, then it will put the same LA
on the interface for two 25 MHz cycles and expect the read
data to be on the LDB interface 135 three cycles after that
read access’ first LA appeared on the interface. For both 0
or 1 wait state reads, the MIC 112 will pipeline read
operations. FIG. 18 shows the MIC 112 timing for an LDB
read operations with 0 wait state. When MIC 112 performs
LDB Reads no wait states:

An initial HA will be put out the cycle after the MIC 112
clocks in the token (RARBI(L)=L) when starting an access.

A series of one or more LAs will always follow starting
the cycle after a HA.

One HA may be inserted in between a series of LAs each
time the MIC 112 needs to access a different 4 KB segment.

The MIC 112 will release the token whenever its Token
Hold Timer expires or it no longer needs to access LDS 123,

For reads, the MIC 112 will release the token to the next
device (RARBO(L)=L) one cycle after it drives its last
address.

The MIC 112 will always drive HALE(L) and BE(0:3)(L)
inactive before tri-stating these signals. This enables a slow
pull-up to be used on the module to hold these signals
inactive.

Once an HA has been driven with the R/~W signal low,
an LDB master write access is triggered when a LA is sent
with at least one BE(0:3) active and the R/~W line low. The
write data and the LA should both be on the interface at the
same time. The 0 and 1 wait state feature mentioned above
for reads does not effect the timing for writes. As in the case
of reads, the master can pipeline a series of write LAs along
with the write data.

FIG. 19 shows the MIC timing for LDB write operations.
As shown, when MIC 112 performs LDB Writes:

An initial HA will be put out the cycle after the MIC
clocks in the token (RARBI(L)=L) when starting an access.

A series of one or more LAs will always follow the cycle
after an HA.

One HA may be inserted in between a series of LAs each
time the MIC 112 needs to access a different 4KB segment.
The MIC 112 will release the token whenever its Token
Hold Timer expires or it no longer needs to access LDS 123.

For writes, the MIC 112 will release the token to the next
device (RARBO(L)=L) the cycle it drives its last address.

The MIC 112 will drive HALE(L) and BE(0:3)(L) inac-
tive before tri-stating these signals. This enables a slow
pull-up to be used on the module to hold these signals
inactive.

The LDB master during its ownership can switch from a
read to a write access. To switch, the master’s write LA must
be on the interface at least 4 cycles after the last read LA
appears as shown in FIG. 20. This will allow enough time
for the read data to be received before the master drives its
write data. Also shown in FIG. 20, a new HA was sent before
the first write LA. The sending of this new HA is optional
but does not cause any added latency since the master
needed to wait for the read data to be received.

A master during a single token holding period can follow
a write access with a read access. As the write LA and the
corresponding write data are on the bus at the same time, the

10

15

20

25

30

35

40

45

55

60

65

34

master could put out a read LA in the following cycle. In
some alternative LDS memory designs, following a write
LA with a read LA may cause the memories and the MSI
write register pipeline to both drive momentarily while
switching directions. For this reason, the MIC 112 prefer-
ably follows a write LA with a new read HA and LA when
switching from a read to a write even if the new HA is the
same as the old HA. This sending of the new HA will only
cost one cycle when the old HA matches the new HA.

FIG. 20 shows the LDB timing when the MIC 112
switches from a read to a write and from a write to a read on
LDB bus. When MIC 112 switches from a Read to a Write
or Write to a2 Read on LDB 117:

One HA will always be inserted when the MIC 112
switches the direction of the access even though the new HA
may be the same as the previous one.

Before switching from a write to a read, the MIC 112 will
check the token hold timer to make sure it has time to reverse
the bus. When switching from a read to a write the token
hold timer is checked as normal since no added latency is
added when switching in this direction.

The MIC 112 will release the token (RARBO(L)=L)
based on the last access it performs either a read or a write.

The MIC 112 will always drive HALE(L) and BE(0:3)(L)
inactive before tri-stating these signals. This enables a slow
pull-up to be used on the module to hold these signals
inactive.

The LDB bus 117 architecture supports an error line that
can be used to notify all the devices on the ring that an error
has been detected. This line should be activated when either
of two types of error occur: 1) non-recoverable, detected
when the LDB__Err line is active for at least 2 cycles; 2)
recoverable errors, detected when the LDB_ Err line is
active for just 1 cycle.

The MIC 112, when master of the LDB 117 checks for the
condition of two tokens being present by determining if a
second token is detected once it has captured the original
token. Upon detecting this condition, the MIC 112 will
activate the LDB__Err line (for at least 2 cycle) until it has
put a USW onto the error queue.

The MIC 112 as master of the LDB 117 also has a
programmable bit accessible from the LPB 115 which
enables or disables the MIC 112 to check recoverable errors.
As a master, this programmable bit will cause the MIC 112
to check parity on its write data when the data is in the
MIC’s boundary register. On reads, the MIC 112 will check
parity on the read data it receives along with the state of the
error line. If the MIC 112 detects that the LDB__ERR line
was active on the interface the same cycle the read data was
on the interface, an error was detected on the read address
that was associated with this read data.

If the MIC 112 has been set up to LDB reads with one wait
state, the MIC 112 will detect that an address error has
occurred when either the LDB__Err line was active in the
cycle read data was valid or if in the previous cycle, the
LDB__Err line was active. This is possible as the read low
address was on the bus for two cycles.

The MIC 112, when not the Bus Master will be in bus
monitor mode. In this mode, the MIC 112 checks for a lost
token condition. This condition, which is detected when the
TRT timer expires, will cause the MIC 112 to take down the
LDB 117 by activating the LDB_ Err line for at least 2
cycles until it puts a USW on the error queue. The MIC 112
uses the same programmable bit used to check recoverable
errors as a master. In Table 5, a description of the recover-

5,459,839

35

able errors detected by the MIC 112 when in bus monitor
mode and the resulting actions taken are listed.

TABLE 5
Recoverable errors the
MIC checks for as bus
monitor (Idle State) MIC action

Read and APE on LA activate error line for 1 cycle such
that it is active 2 cycles after

address was on interface

put USW on error queue

activate error line as described in
previous case for each LA that
follows HA until a new HA is detected
or all BEs are inactive (master
finished).

put USW on error queue

Read and APE on HA

Read and DPE error line is NOT activated
Write and APE error line is NOT activated
on LA or HA put USW on error queue

Write and DPE error line is NOT activated

put USW on error queue
activate error line for one cycle
such that it lines up with first
LAs read data

error line is NOT activated

put USW on error queue -

Read and at least
one BE(0:3) active
while -HALE active
Write and at least
one BE(0:3) active
while -HALE active

HA - high address, detected by monitor when HALE is active

LA - low address, detected by monitor when any of -BE(0:3) are active
APE - address parity error

DPE - data parity error

The software and programming interfaces to the MIC 112
are listed in Table 6 and 7. Table 6 illustrates bus master
operations which can be programmed, controlled and/or
performed by the MIC 112. Table 7 illustrates slave opera-
tions on the MC 110 and LPB 117 which allow accesses to
the programming interfaces of the MIC 112.

TABLE 6
MIC Operation Bus Operation Transfer Path
Writing LDB Data MC Mem Write MC IDB LDB
Reading LDB Data MC Mem Read LDB IDB MC
Writing QRC Reg MC VO Write MC QRC Reg
Reading QRC Reg MC VO Read QRC Reg Mc
writing QWC Reg MC VO Write MC QWC Reg
Reading QWC Reg MC VO Read QWC Reg MC
Writing QD Reg MC VO Write MC QWB LPB
Reading QD Reg MC VO Read LPB QRB MC
Reading FBL MC 1/O Read FBB MC
Reading JP Reg MC VO Read JP Reg MC
Writing POS Reg MC VO Write MC POS Reg
Reading POS Reg MC VO Read POS Reg MC
Reading Cntl Reg LPB Mem Read Cntrl Reg LPB
Writing Cntl Reg LPB Mem Write LPB Cntrl Reg
Reading Queue Init LPB Mem Read QM LPB
Writing Queue Init LPB Mem Write LPB QM
Reading Queune Cntl LPB 1/0 Read QM LPB
Writing Queuve Cntl LPB I/O Write LPB QM
Reading L.LDB Data LPB Mem Read LDB LPB
Writing LDB Data LPB Mem Write LPFB LDB
Reading STI/Scan STI Read STI Ext Dev
Writing STI/Scan STI Write Ext Dev STI

TABLE 7
MIC Operation Bus Operation Transfer Path
‘Write Memory Data MC Mem Write ODB MC
Read Memory Data MC Mem Read MC IDB LDB
Write 1/O Data MC I/O Write ODB MC
Read 1/O Data MC /O Read MC IDB LDB

10

15

20

25

30

35

40

45

50

55

60

65

36
TABLE 7-continued

MIC Operation Bus Operation Transfer Path
Writing QWC Reg MC VO Write Master Exe MC
Reading QWC Reg MC /O Read MC Master Exe
Writing QD Reg MC IO Write Master Exe MC
FBL Fetch MC /O Read MC Master Exe
Write Memory Data LPB Mem Write MIC LPB

Read Memory Data LPB Mem Read LPB MIC
Write Memory Data LDB Write MIC LDB
Read Memory Data LDB Read LDB MIC

Commanded Transfers

Commanded Transfers are master operations performed
on either the MC, LPB, or LDB. This section describes in
more detail, operations described in Table 7. The MIC is
capable of controlling the data transfers without CPU inter-
vention.

MC Commanded Transfer

Commanded Transfers on the MC are initiated via a MIC
Command Word (MCW). MCWs are located in one of the
Queues which the MIC is managing. Queue #D is defined as
the MIC’s Command Queue (MCQ) dedicated to MCWs. As
shown in FIG. 21, when the MCQ contains an entry, the QM
unit within the MIC interrupts the Master Execution unit to
fetch a MCW in step 300. The MCW defines the LPB
memory address with the MIC control block can be found,
step 301. The MIC Master execution unit performs flag
checks on the MCB, step 302, free-block address step 303,
and target address information for the data move step 304 for
the commanded transfer. Once the Commanded Transfer,
defined by the MCB, has been completed, status of the
transfer can be posted to a Queue existing on the LPB step
306 and/or to a Queue existing on another MC device step
305. The status posted to a Queue existing on the LPB is
called the MIC Status Word (MSW). The MSW defines any
errors which may have occurred in step 307 during the
Commanded Transfer and the MCB used for the transfer.
The status posted to a Queue existing on another MC device
is called the Micro Channel Post Command (MPC). The
MPC defines the source device, flags, and target address of
the transfer.

FIG. 21 illustrates a high level flow diagram of a Master
Execution or Commanded Transfer operation described
above. Flags, described in more detail in MIC Control Block
below, define the direction of the flow diagram. Commanded
Transfers (FIG. 22) illustrates the relationship between the
MCW 310, MCB 312, MSW 318, MPC 316 and remote
MIC free block register 314 during a MC Commanded
Transfer.

MIC Command Word

The MCW consists of four bytes of information which
exist in the MCQ. The MCQ is defined as Queue #D and can
hold up to 1 K MCWs. FIG. 23 illustrates the fields within
a MCW. The following section describes each field and its
function.

MIC Control Block

The MIC supports a fixed length MIC Control Block
(MCB) of 16 bytes. The MCB must exist in the LPB
Memory Address space defined by the MCW. FIGS. 24
through 27 illustrate the MCB in detail. In general, the

5,459,839

37
execution of the MCB is governed by the flags contained in
the first word of the MCB. FIG. 28 illustrates the valid
combinations of MCB flags.

MCB Notes

Below lists some notes on utilization of the MCB fields.

1. The Source and Target Address fields MUST be defined
on a 4 byte boundary, except when NOP=‘1" or FMT=
‘1’. A 4 byte boundary means that the least significant
two bits of the Source and Target Address fields MUST
equal ‘00°.

2. The Black Length field MUST be equal to 1, 2, 3, or
4*n, where n=0 to 16 K., as indicated in FIGS. 24 and
27.

3. A Black Length value equal to 0, indicates a transfer of
64 K bytes.

4. A Black Length value MUST be chosen so that the
Source and
Target Address plus the Black Length field does not
exceed or cross a 64 Kbyte address boundary. Only the
lower 16-bits of address are allowed to increment, if a byte
count causes the 16-bits of address to produce a ripple carry
then the upper bits are not modified and the address will
wrap.
5. The MPC QID should not be equal to ‘D’ if the MC
device receiving the MPC is another MIC.

MIC Status Word

FIG. 29 illustrates the fields of the MSW, The MIC has the
ability to build status after the completion of a Commanded
Transfer. If the PCI bit in the MCB is set or an error occurs
during the Command Transfer, the MIC will post the Queue
indicated by the MCW RQID field with an eight byte MSW.
The receiving Queue must have a byte count defined as eight
bytes. The MSW provides a report of any errors which may
have occurred during the command operation. If an error
occurs during a chained operation then the chain is termi-
nated with status being built indicating the address of the
errored MCB.

Micro Channel Post Command

FIG. 30 illustrates the MPC and defines its fields. The
MIC has the ability to build status and post a MC device
after the completion of a Commanded Transfer. If the PST
bit in the MCB is set the MIC will post status to a Queue
which exists on another MC device. This other MC device
may be another MIC or MC device which can receive,
understand, and/or translate the MPC message and protocol.
The Queue being posted is determined by the MPC QID
field in the MCB. The posted status is called the Micro
Channel Post Command (MPC). The MPC contains eight
bytes of data indicating the source ID, target address, and
byte count related to the data which was moved during the
Commanded Transfer.

LPB Commanded Transfers

Commanded Transfer on the LPB can be initiated from
the Master Execution unit, the QRB, the QWB, the FBB, or
from a reportable error within the MIC. The Master Execu-
tion unit uses the LPB to fetch MCWs and MCBs, or to post
MSWs. The QRB uses the LPB to fetch Queue entries which
a MC device is requesting as part of a Queue Read Opera-
tion. The QWB uses the LPB to write entries to a Queue
loaded from the MC via a Queue Write operation. The FBB

20

25

30

35

40

45

50

55

60

65

38
uses the LPB to fill FB entries which have been removed by
devices on the MC. The LPB also allows the MIC to post
unsolicited errors to a Queue managed by the MIC.

LDB Commanded Transfers

Therefore, as shown in Table 6, MIC operations on the
LDB are commanded transfers. These transfers can be
initiated by the Master Execution unit, the IDB, or the LPB
Interface. All operations on the LDB are simple reads and
writes. The MIC does not have any programmable registers
on the LDB.

Device Initiated Transfers

Device Initiated transfers are slave operations performed
on either the MC or LPB. This section describes in more
detail, operations described in Table 6.

The MIC allows access from the MC or LPB to the LDB,
Queues and Control Registers. These accesses are per-
formed in the Memory or I/O address space that exist on the
MC and LPB. The MIC decodes the MC or LPB address and
performs the slave operation related to the selected address.

LDB Access

As can be seen in FIG. 19 and FIG. 20, the MIC supports
direct access to the LDB from either the MC or the LPB. In
both cases the MIC allows access to the LDB by monitoring
the MC and/or LPB for addresses which are within a
predefined range. For simplicity, figures which illustrate a
LDB address indicate a full byte address. The MIC does not
implement byte addressability in this way. Instead, the lower
two address bits are not driven and are replaced by using
four byte enables, BE(0:3), to allow for full byte address-
ability during LDB accesses. Since the MIC only allows up
to 10-bits of the LDB address to be driven at once, the LDB
address is split or multiplexed into two parts; a high address
and a low address. The high address contains the upper
8-bits of the full LDB address. The low address contains the
next 10-bits of address. The byte enables, BE(0:3), provide
the remaining byte controls necessary for a complete 1
Mbyte LDB address.

Access from MC

For the MC to access LDB, a predefined address range is
assigned within the MC Memory space. This range of
addresses is defined by a base address plus an offset. The
LDB MC base address is defined by the LDB MC Memory
Base Address register. The LDB MC Memory Base Address
register can be found in POS 3 and 4 Sub-Address ‘0101".
The LDB MC Memory Base Address together with an offset
allow any MC device direct memory access to the LDB
memory space. The amount of memory space accessible
from the MC is determined by the LDB Size field in POS
Reg 3 Sub-Address ‘0000°. The LDB Size field limits the
offset the MIC will decode. LDB memory space can be
defined as 128 K, 256 K, 512 K, or 1 Mbyte. See “MIC
Programmable Option Select (POS) Registers” for more
details about the LDB MC Memory Base Address registers
and LDB Size fields. FIG. 31 illustrates the MC Memory
map for LDB accesses and the byte address relationship
between the MC and LDB. Note: The MC +M/-10 signal
must be equal to ‘1’ for LDB accesses.

5,459,839

39
LDB Access from LPB

For the LPB, accessing the LDB requires a paging type
method. The paging method requires the LPB device to load
a segment register which defines one of 256 4 Kbyte
windows within LDB to be accessed. The LPB to LDB
Access Segment Register is defined at LPB Memory
Address, X1000’. Once the segment has been initialized, an
offset address within the LPB Memory Address space
‘X0000’ through ‘XOFFF’ defines a point within the 4 K
window. FIG. 32 illustrate the LPB Memory map for LDB
Accesses and the byte address relationship between the LPB
and LDB.

Queues

Therefore, as can be seen from Table 6, the MIC provides
hardware support for managing 16 4 Kbyte Queues stored
within a 64 Kbyte segment of LPS. MIC Queue management
includes maintenance of the Queue Read and Queue Write
Pointers, Queue status, Queue Entry size, and assigned
interrupt levels for each enabled Queue. All Queue mainte-
nance information and control is contained within the MIC’s
Queue Manager (QM). Access to this Queue maintenance
information can be achieved in two different ways; direct or
controlled. Access to the Queue themselves can be achieved
from either the LPB or MC.

Direct QM Access

Direct access to all Queue maintenance information is
achieved only from the LPB Memory space. Direct access
allows the LP to initialize and manipulate the Queue main-
tenance information. Each of the 16 Queues requires a 4 byte
register, within the MIC, to hold the Queue maintenance
information. These registers are called the Queue Initializa-
tion Registers (QIR). The LPB address location of the QIRs
is determined by the following;

QIR LPB Memory Address = XXXX;QIR Segment-
;Queue Number;QIR Byte

where XXXX= don’t care. See note.

where QIR Segment='0001000100

where Queue Number='0000" through ‘1111’

where QIR Byte=‘00" through ‘11’

FIG. 33 illustrates the relative LPB memory location of
the QIRs, accessible via a direct access. FIG. 34 illustrates

and describes in detail the 4-byte generic layout the QIR
accessible via a direct access.

Controlled QM Access

Controlled access to Queue maintenance information is
achieved only from the LPB I/O space. Controlled access is
used during operational modes to allow any LPB device
access to some of the Queue maintenance information
contained within the QIR. With this data, a LPB device can
determine the location and status of any Queue or current
active Queue entry and can add or remove a Queue entry
from any Queue. In addition, the MIC uses a controlled
access to update Queue maintenance information, such as
pointer and interrupt status. The Queue maintenance infor-
mation accessible via a controlled access is a subset of the
same information available in the QIR. This subset of
information is contained within two 2 byte registers called
the Queue Pointer Registers (QPR). The LPB device only
needs to access one of these 2 byte registers depending
whether a Queue entry is to be added or removed from a

15

20

30

35

40

45

50

55

60

65

40
Queuve. FIG. 35 illustrates the relative LPB I/O space
location of the QPR available to any LPB device via a
controlled access. FIG. 36 illustrates the generic layout of
one of the QPR available via a controlled access.

Queue Access from the LPB

From the LPB, the Queues within the LPB Memory space
can be indirectly accessed by using the QPR within the LPB
I/0 space. A LPB device directly accesses the Queues by
obtaining one of the two Queune Pointers from the MIC for
the requested Queue. The QRP is read from the MIC if a
Queue Entry is to be removed from a Queue. The QWP is
read from the MIC if a Queue Entry is to be added to a
Queue. The Queue Pointers contain part of the physical LPB
Memory address of the Queue to be accessed. The remaining
part of the physical address can be obtained from the Queue
number and from a LPB Queue Segment. FIG. 37 illustrates
the Queues and their relative address within LPS and the
LPB Memory address. The LPB memory address is com-
posed of Q Seg 320, Q Num 322, Q Pointer 324 and QE byte
326 which forms a 20-bit word. The two least significant bits
are used as the status bits.

LPB Queue Access Protocols

FIGS. 38 and 39 describe the control protocol flows for a
LPB Queue Read and Queue Write accesses. These flows
illustrate the steps required by all LPB devices which utilize
the MIC 112, Queue management support. Also, the MIC
being a LPB device as well, is designed to implement these
required steps to access a Queue.

A queue read operation is shown in FIG. 38 where a read
queue pointer is received from the MIC LPB I/O space at the
first step in start of a read operation as depicted by block
340. The next step shown by block 342 is to verify the
pointer status. The pointer status is determined by looking at
the two least significant bits of LPB memory address. If an
error is indicated, the queue error is reported to the local
processor by the MIC 343. If the queue is not available, that
is it is being used by another LPB device, a retry is
instigated. If the queue is available, the LPB physical
memory address is constructed as shown by block 344. The
LPB memory address is equal to the queue segment con-
catenated with the queue pointer followed by the status bits.
Once the address is known, the data is read either in
increments of 4, 8 or 16 bytes depending upon how the
queue was initially set up shown by block 346. Once the data
is read, a new read pointer is written to the MIC in block 348
and the new queue pointer value is returned. The MIC
verifies the queue pointer with a CPU reading to see if the
queue read pointer is okay, as shown in block 352, where the
queue read pointer is updated and maintained by the MIC.
If an error is determined as shown in block 354, the queue
error is reported to the local processor by the MIC and the
queue pointer is restored to its original value.

In a like manner, a queue write is performed as shown in
FIG. 39 wherein the queue write pointer is read from the
MIC local processor bus as depicted by block 360. Checking
the status bits verifies that the pointer is available as shown
in block 362. When an error is detected, a queue error report
is sent to a local processor by the MIC as depicted by step
363. Once the queue is available, the LPB physical memory
address is constructed in step 364. The memory address is
equal to the queue segment plus the queue number plus the
queue pointer concatenated with the status bits. The data is
written as shown in step 366 in increments of 4, 6 or 8 bytes

5,459,839

41

wide. Once the queue is written, the write pointer is updated
and returned to the MIC with the new queue pointer value
as shown in 368. The MIC verifies the pointer value 370 and
if okay, updates and maintains the pointer value in step 372.
If not okay, an error signal is reported in step 374 to the local
processor by the MIC.

What is shown is a queue pointer manager facility archi-
tected to efficiently optimize queue operation performance
by implementing the performance critical functions in hard-
ware and the rest of the facility in software. The hardware
functions include a read pointer register having a status field
for each queue wherein the status field specifies the avail-
ability of the queue. A write pointer register having a status
field is set up for each queue. An interrupt field for each
queue denotes which interrupt signal is activated when the
queue goes non-empty. A queue byte count field for each
queue is used to define a queue entry length which allows
flexibility in the queue byte entries.

The above resources are implemented in fast access
registers. The pointers contain memory addresses to a gen-
eral purpose, random access memory which acts as a FIFO
in which the physical queue elements actually reside. The
queue pointer manager is mapped into the CPU memory and
also into the I/O spaces.

The software function involves reading either the queue
write pointer or the queue read pointer to perform a queue
read or write operation. The software checks the status of the
queue either writing or reading the queue entry data as a
normal memory FIFO access and then returns the queue
read/write pointer to the queue pointer hardware function.

The queue pointer manager in the present invention has
the following advantages over a totally hardware managed
queue structure in that the queue pointer manager is less
expensive than a pure hardware solution because it elimi-
nates memory address bus and data bus multiplexing logic.
The queue pointer manager does not require memory access.
It passes pointers to the CPU over the data bus after which
a CPU performs memory accesses to either send or receive
the queue elements. A total hardware solution requires that
the queue manager have memory access capability in order
to physically transfer the queue element data. Negligible
performance degradation results from having queue data
transfers performed by the CPU. The queue pointer manager
reduces the complexity of the memory timing and control
logic since the queue pointer manager does not require
memory access. The queue pointer in the present invention
minimizes access latency for other shared memory bus users
since the queue data entry transfers are performed with
indivisible interruptible memory operations. Contrastly, a
purely hardware solution performs queue entry data trans-
fers with indivisible memory operations increasing the
memory access latency for other bus users.

The present invention has the following advantages over
a totally software managed queue structure in that the queue
pointer manager increases performance per queue opera-
tions because it eliminates the need for software to update
and verify the queue write and queue read pointers. It also
eliminates the need for software for determining queue
overflow, underflow and other error conditions. It eliminates
the need for software to set/clear queue interrupts. These
three functions are the most critical with respect to degra-
dation of performance within a queue manager. Additionally,
the queue pointer manager alleviates internal CPU or exter-
nal memory resource usage since the present invention uses
hardware to provide the necessary pointer array. Very little
software code storage is needed, thereby reducing the

10

15

20

25

30

35

40

45

50

55

60

65

42

pointer processing overhead. The queue pointer manager
provides a built-in public queue capability where a given
queue may be written or read by more than one processing
entity. A public queue capability in a pure software solution
requires a pointer array to be resident in a shared memory
with a test and set function so that pointers can be accessed
by multiple users in noninterfering fashion. This requires
significant software processing and decreases queue opera-
tion performance.

Queue Access from the MC

All MC devices, as well as the MIC have access to the
Queues which reside in LPS. For the MC, Queues are
accessed indirectly via two control registers and a data
register which reside within the MC I/O Address space.
These registers are defined beginning at the address speci-
fied in the Control Register MC I/O Base Address. See “MIC
Programmable Option Select (POS) Registers” for more
details about the Control Register MC I/O Base Address
register. The two control registers are defined as a Queue
Read Control (QRC) Register and a Queue Write Control
(QWC) Register. The data register is defined as the Queue
Data (QD) Register. FIG. 40 illustrates these registers in the
MC I/O Address space.

Queue Read Control Register

The QRC register is used to inform the MIC which Queue
a MC device wishes to read. The QRC register also informs
the MC device of the current status of the Queue Read
request and the status of the Queue Read Buffer (QRB). The
QRB is used to buffer the data received from the requested
queue in LPS. FIG. 41 illustrates the QRC Register in more
detail and defines the QRC Register fields.

Queue Write Control Register

The QWC register is used to inform the MIC which
Queue a MC device wishes to write, as well as the Queue
byte count. The QWC register is also used to indicate status
of the Queue write Buffer (QWB). The QWB is used to hold
the data received from the MC destined for the requested
Queue in LPS. FIG. 42 illustrates the QWC Register in more
detail and defines the QWC Register fields.

Queue Data Register

The QD register is used to access the QRB and the QWB.
When the QD register is read, data from the QRB is be
removed. When the QD register is written, data from the MC
is added to the QWB. The Queue Data Register is defined at
MC I/O Address starting at MIC CR MC /O Base Address
+‘01000’ and ending at MIC CR MC I/O Base Address
+01011°. Byte Counts of 4, 8, or 16 bytes are valid for the
QD Register. Since the actual I/O Address space is only four
bytes, writing and/or reading of eight or 16 bytes in the MC
Basic Transfer mode can be accomplished by performing
two or four 4 byte transfers. The use of the MC Streaming
Data mode can accomplish this task in one transfer opera-
tion.

MC Queue Access Protocol

FIGS. 43 and 44 describe the control protocol flows for a
MC Queue Read and Queue Write accesses. These flows
illustrate the basic steps required by all MC devices which
utilize the MIC Queue management support. The MIC
being, a MC device as well, is designed to implement these
required steps to access a Queue when performing a MPC

5,459,839

43

post operation.

MC/Queue Access Procedures and Restrictions

This section describes in more detail the MC Queue
Access procedure. In addition, variations to the basic steps
in performing a MC Queue Access are described as well as
specific notes.

MC Queue Read Operation Protocol, Method “A”

Below, describes the recommended Queue Read proce-
dure for all systems.

Step 1. RD QRCR.

If AVL = ‘0" then goto Step 1.

If AVL = ‘1" then the MIC automatically

sets AVL = ‘0

AND

(goto Step 2, to continue OR goto Step 5, to cancel)
WR QRCR (Q# = *Valid Queue Number’,

STAT = 'XXLACK = 10’, AVL = *X")

MIC automatically begins fetching Queue Data AND
(goto Step 3, to continue OR goto Step 5, to

cancel)

RD QRCR

If STAT = ‘00" (Queue Read Data Ready) then

(goto Step 4, to continue OR goto Step 5, to

cancel)

If STAT = ‘01’ (Queue Read Data Not Ready) then
(goto Step 3, to continue OR goto Step 5, to

cancel)

If STAT = ‘10’ (Queue Read Error) then goto Step 5, to
cancel

Note: STAT = ‘11’ is not possible.

RD QDR (Data is read from the Q indicated by the Q#
in the QRCR))
‘When all required bytes have been read then the MIC
will automatically set AVL = ‘1° AND

goto Step 1.

OR

If all bytes have not been read then (goto Step 4, to
continue OR goto Step 5, to cancel).

WR QRCR (Q# = ‘X, STAT = ‘XX,

ACK = ‘1", AVL = ‘X")

then AVL = IIl AND goto Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Note: When STAT = ‘00", the MIC will allow the MC Master to read the
requested Queue data WITHOUT inserting a NOT READY condition on the
Micro Channel.

Note: The MC Master should never read more bytes than
is indicated for the Queue being read. Exceeding the indi-

cated byte count will cause an USW and/or a NOT READY
condition on the Micro Channel.

MC Queue Read Operation Protocol, Method “B”

Below, describes the recommended procedure for com-
pleting a Queue Read in systems which only allow ONE bus
master to perform a Queue Read operation.

Step 2. WR QRCR (Q# = *Valid Queue Number’,

STAT = ‘XX’,ACK = ‘0’",AVL = ‘X’)

MIC automatically begins fetching Queue Data AND
(goto Step 3, to continue OR goto Step 5, to
cancel)

RD QRCR

If STAT = ‘00’ (Queue Read Data Ready) then
(goto Step 4, to continue OR goto Step 5, to
cancel)

If STAT = ‘01’ (Queue Read Data Not Ready) then
(goto Step 3, to continue OR goto Step 5, to
cancel)

Step 3.

5

20

25

30

35

40

45

50

55

65

44

-continued

If STAT = ‘10’ (Queue Read Error) then goto Step 5, to
cancel
Note: STAT = ‘11’ is not possible.

Step 4. RD QDR (Data is read from the Q indicated by the Q#
in the QRCR)
‘When all required bytes have been read then the MIC
will automatically set AVL = ‘1’ AND
goto Step 2.
OR
If all bytes have not been read then (goto Step 4, to
contimee OR goto Step 5, to cancel).

Step 5. WR QRCR (Q# = X’ STAT = 'XX’,

ACK = ‘1’,AVL = *X") then
AVL = ‘1’ AND goto Step 2.

MC Queue Read Operation Protocol, Method “C”

Below, describes the procedure for completing a Queue
Read without the use of the Queue Read semaphore or status
flags.

Note: Method “C” is not the recommended procedure for
Queue Reads. This method should NOT be used if one of the
following is true;

1. The system contains multiple masters which can per-
form Queue Read operations.

2. The system Micro Channel NOT READY timeout of
3.5 usec must not be violated.

3. The system can not recover from a Micro Channel NOT
READY timeout error without severe implications.

4. The system/adapter can not mask out the USW which
occurred due to error condition “d)” described in the
next section.

Note: Estimating the NOT READY time when using
Method “C” can only be determined by a detailed analysis
of the MIC, adapter, and system hardware and software
environments. If any of this information is unavailable or
indeterminate then Method “C” is not recommended.

Step 2. WR QRCR (Q# = ‘Valid Queue Number’,

STAT = ‘XX’ ,ACK = ‘0’,AVL = ‘’X")

MIC automatically begins fetching Queue Data AND
(goto Step 4, to continue OR goto Step 5, to

cancel)

RD QDR (Data is read from the Q indicated by the Q#
in the QRCR)

‘When all required bytes have been read, goto Step 2
OR

If all bytes have not been read then (goto Step 4, to
continue OR goto Step 5, to cancel).

WR QRCR (Q#t = ‘X", STAT = ‘XX’,

ACK = ‘I’,AVL = ‘X")

then AVL = ‘1” AND goto Step 2.

Step 4.

Step 5.

MC Queue Read Operation Error
Conditions/Cautions

The MIC will generate a USW if one of the following
conditions occur;

1. Step 2 is performed anytime after the completion of
Step 2 and before the completion of either Step 4 OR
Step 5.

Note:?l‘he QRCR does not get updated if this error occurs.

2. The number of bytes read in Step 4 are greater than the
number of byte fetched for the Queue.

3. Step 4 is performed before Step 2.

5,459,839

45
4. Step 4 is performed when STAT=‘01" OR STAT=10’.
3. Step 5 is performed anytime after Step 2, except when
STAT="10".

Note: The MIC does NOT generate a Channel Check
condition if one of the above errors occurs. Instead, posting
the USW to the Error Queuve causes a LPB Interrupt to
become active. It is then up to the adapter and/or system to
determine the error recovery procedure.

Note: Performing Step 4 before Step 2 WILL cause a
NOT READY condition on the Micro Channel, which can
only be cleared by the master aborting the cycle. This may
cause either a Micro Channel Timeout or Chammel Check
condition.

Note: Performing Step 4 after Step 2 without completing
Step 3 may cause a NOT READY condition, (STAT=01"),
on the Micro Channel, followed by one of the following
conditions to occur;

a) Step 4 will complete normally, if STAT=‘00". OR

b) the NOT READY condition will continue, if STAT=

‘10’, until cleared by the master aborting the cycle. This
may cause either a Micro Channel Timeout or Channel
Check condition.

Note: Method “A”, Method “B”, and Method “C” should
NOT be used together in a system.

Note: See the Queue Error Register defined on the LPB
for additional errors which may be reported. Errors which
cause STAT="10’ are defined in the Queue Error Register.

Queue Write Operation Protocol, Method “A” as
Shown in FIG. 44

Below, describes the recommended Queue Write Proce-
dure for all systems.

Step 1. RD QWCR

If AVL = ‘0’ then goto Step 1.

If AVL = ‘1" then the MIC will automatically set

AVL = ‘0’ AND

(goto Step 2, to continue and modify the QWCR

OR

goto Step 3, to continue and do not modify the QWCR
OR

goto Step 4, to cancel).

WR QWCR (Q# = “Valid Q#',

QBC = ‘Valid Q Byte Count, ACK = ‘0,

AVL = ‘X")

Goto Step 3, to continue OR goto Step 4, to cancel.
WR QDR (Data is written to the Q indicated by the Q#
in the QWCR with the number of bytes indicated by
the QBC in the QWCR)

When all valid bytes have been written then the MIC
automatically sets AVL = ‘1* when space becomes
available for another QW operation AND goto Step 1.
OR

If all valid bytes have not been written then (goto

Step 3, to continue OR goto Step 4, to cancel).

WR QWCR (Q# = ‘X’,QBC = ‘X",

ACK = ‘1’,AVL = ‘X")

then the MIC automatically ends the Q operation and
sets AVL = ‘1’

when space becomes available for another QW operation
AND goto Step 1.

Step 2.

Step 3.

Step 4.

Note: AVL=‘1" indicates that the MIC is capable of
performing either a 4, 8, or 16 byte Queue Write operation
WITHOUT inserting a NOT READY condition on the
Micro Channel.

Note: When Method “A” is used, a MC Master should
never write more bytes than is indicated by the QBC field in
the QWCR. Exceeding the indicated byte count may cause

5

10

15

20

25

30

35

40

45

50

55

60

65

46

an USW and/or a NOT READY condition on the Micro
Channel.

MC Queue Write Operation Protocol, Method “B”

Below, describes the procedure for completing a Queue
Write without the use of the Queue Write semaphore.
Note: Method “B” is not the recommended procedure for
Queue Writes. This method should NOT be used if one of
the following is true;
1. The system contains multiple masters which can per-
form Queue Write operations.
2. The system Micro Channel NOT READY timeout of
3.5 usec must not be violated.
3. The system can not recover from a Micro Channel NOT
READY timeout error without severe implications.
Note: Estimating the NOT READY time when using
Method “B” can only be determined by a detailed analysis
of the MIC, adapter, and system hardware and software
environments. If any of this information is unavailable or
indeterminate then Method “B” is not recommended.

Step 0. If the QWCR needs modification then goto Step 2,
OR .
If the QWCR does not need modification then goto Step
3.
Step 2. WR QWCR (Q# = “Valid Q#’,
QBC = “Valid Q Byte Count, ACK = “0’,
AVL = ‘X")
Goto Step 3, continue OR goto Step 4, to cancel.
Step 3. 'WR QDR (Data is written to the Q indicated by the Q#
in the QWCR)
‘When all valid bytes have been written
then goto Step 0
OR
If all valid bytes have not been written
then (goto Step 3, to continue OR goto Step 4, to
cancel).
Step 4. WR QWCR (Q# = ‘X’,QBC = ‘X", ACK = ',
AVL = ‘X’)

then the MIC automatically ends the current Q
operation AND goto Step 0.

Queue Write Operation Error Conditions/Cautions

The MIC will generate a USW if one of the following
conditions occur;

1. Step 2 is performed anytime (after the completion of
Step 2, or after the start of Step 3) AND (before the
completion of either Step 3 or Step 4).

Note: The QWCR does not get updated if this error

occurs.

2. The number of bytes written in Step 3 is greater than the
QBC AND Step 1 was performed before Step 3.

Note: This error is only valid for method “A” and may not
occur if performed in the MC Basic Transfer mode.

3. The Queue Write Buffer experienced a Queue overflow

condition.

Note: This error should not be possible.

Note: The MIC does NOT generate a Channel Check
condition if one of the above errors occurs. Instead, posting
the USW to the Error Queue causes a LPB Interrupt to
become active. It is then up to the adapter and/or system to
determine the error recovery procedure.

Note: Performing Step 3 without performing Step 1 may
cause a NOT READY condition on the Micro Channel,
which may extend greater than 3.5 usec. This may then

5,459,839

47

cause either a Micro Channel Timeout or Channel Check
condition.

Note: Performing Step 4 after Step 3 has started and
before Step 3 has completed will cause the MIC to terminate
the Queue write operation and a Queue Error for the Q#
defined in the QWCR will be indicated to the Local Pro-
CESSOT.

Note: Method “A” and Method “B” should NOT be used
together in a system.

Note: See the Queue Error Register defined on the LPB
for additional errors which may be reported.

Queue Access from the MIC

The MIC has direct access to the Queue Manager func-
tion. This allows the MIC access to the Queues without
arbitrating for the MC or LPB. A priority scheme within the
MIC resolves contention for the Queue Pointers requested
by the LPB or MC.

Specialized Queues and Registers

Besides the QM function the MIC supports three special-
ized Queues and a specialized register. The three Queues are
as follows;

Queue “D” MIC Command Queue. This Queue stores
MCWs which are used to initiate MIC Commanded
Transfers.

Queue “E” Unsolicited Status Word Queue. This Queue
stores USWs which have been generated by the MIC as
a result of an error.

Queue “F” Free Block List Queue. This Queue stores
starting pointers for available blocks of memory within
the LDB.

The specialized register is called the Job Pending Register
(JPR). This register is used by either a LPB or MC device to
determine which of the 16 available Queues contains a
pending Queue entry or job.

MIC Command Queue

The MIC automatically monitors the status of the MIC
Command Queue (MCQ), Queue “D.” If a Queue entry is
appended to this Queue then the MIC initiates a Com-
manded Transfer. See “Commanded Transfers” for more
details of a Commanded Transfer. The MCQ can hold up to
1 K MCWs.

Free Block List

The MIC manages a special Queue defined as the LDS
Free Block List. This Queue contains 4 byte entries which
represent the starting address of a range or block within the
LDB. Up to 1 KLDS Blocks can be defined for use. The size
of these blocks is dependent on the addresses defined in the
FBL Queue and the available memory space.

Note: Since only 1 Mbytes of data is accessible within
LDB, only the 20 least significant bits of the 4 byte Free
Block entry are valid.

The FBL is controlled in the same manner as the other
Queues. The FBL can be loaded during initialization with
4-byte Queue entries equivalent to the starting physical
address of the Block in LDS. An interrupt does not need to
be assigned for the FBL.

A free block can be removed from the FBL by either a
LPB Queue Read operation, a MC Queue Read operation, or
reading of the MC Free Block Register. Once removed it is

15

20

25

30

35

40

45

50

55

60

65

48

the responsibility of the removing device to utilize and
manage this block.

When use of the block is no longer required, the block can
be added back into the FBL, by either a LPB Queue Write
or MC Queue Write operation. This then makes the block
available for use by another device.

Note: The MIC does not automatically return a block to
the FBL. It is the responsibility of the Local Processor or
System Processor to initiate a block return to the FBL.

MC Free Block List Register

To improve performance of MC devices which need
access to this Queue, the MIC prefetches four 4-byte entries
from the FBL. This allows a MC device quick access to Free
Blocks in the MC I/O Address space. The four 4-byte entries
are temporarily stored within the Prefetch Free Block Buffer
until read by a MC device. A 4- byte Prefetched Free Block
can be read from the MC Free Block List Register starting
at a MC 1/O Address of MIC CR MC I/O Base Address
+‘01100°. FIG. 45 illustrates this register relative to the MC
I/O Address space.

The MC FBL Register provides access to the FBL for any
MC device. The FBL Register provides a 4-byte address
which represents the starting MC Memory address to a block
within the LDB. Reading this register removes one of the
4-byte Free Block entries from the Prefetched Free Block
Buffer, causing the MIC to begin prefetching another, auto-
matically.

Since only 20 bits are valid from the Free Block List, the
MIC must construct a valid 32-bit MC Memory Address.
The upper 12 bits are taken from the LDB MC Memory Base
Address Register in POS 3 and 4, Subaddress ‘0101°. The
lower 20 bits are taken from the Free Block List.

In addition, the MIC provides a status bit for the MC
device. This status bit indicates whether the Free Block
Entry is valid or not. The Status can also be used to
determine whether a FB fetch retry is necessary or termi-
nation of the transfer is required.

Note: The least significant 2 bits of the FBL Entry has
been used to represent the FB Status. In doing so, this forces
all Free Blocks read from the MC via the FBR to be on 4
byte address boundaries. Note: The MC FBR is a READ
ONLY register.

Job Pending Register

The Job Pending Register (JPR) is used to indicate
whether a Queue contains a Queue entry or not. When
Queues share a hardware interrupt, the JPR can be used to
determine which Queue is causing the interrupt. The JPR is
16 bits wide and contains a bit for each Queue. The JPR is
accessible from either the LPB or the MC. The JPR is
located at LPB 1/0 address=‘1140" and at MC I/O address=
'CR MC I/O Base Address:10000". Note: The JPR can only
be written from the LPB when LPM="0’.

Control, Status, and Initialization Registers

The MIC allows devices on the LPB and the MC to access
necessary initialization, control, and status registers. Regis-
ters related to LPB operations are contained within the LPB
Memory -and I/O address space. Registers related to MC
operations are contained within the MC POS Registers.

5,459,839

49
LPB

ALPB device can have access to some of the MIC control
registers as well as status and initialization registers. The
control registers are defined in the LPB memory space and
reside within addresses ‘1002’ through ‘100F’ and addresses
‘1100’ through “1146’. Note: To access these control regis-
ters, “CSEL MUST be active.

A status register is available to a LPB device via the LPB
1/O space which indicates possible Queue errors which may
have occurred. This register is called the Queue Error
Register (QER) and can be found at LPB I/O address ‘1142,
The QER can only be written when LPM=*0".

MIC Programmable Option Select (POS) Registers

The MIC provides software programmable system con-
figuration registers which replace hardware switches and
jumpers. These registers are referred to as Programmable
Option Select (POS) registers. The POS registers provide
configuration and identification data for the MIC and system
processor. These registers are loaded with configuration
information immediately after system power on reset (POR).
The System Configuration protocol is used to access the
POS registers. The POS registers consist of eight bytes
located at POS 1/O addresses XXX0 through XXX7. Several
of the POS registers contain required information.

The POS registers also support the use of the Sub-Address
feature. The Sub-Address feature allows access to additional
registers. These additional registers include programmable
LDS size, MC memory slave addresses for accesses to LDS,
Interrupt assignments, timers, and MC I/O slave addresses
for accesses to the Queues and status. Sub-Addressing is
also used to access the Vital Products Data (VPD), necessary
for proper MC identification.

An adapter ADF file provides the initial values of all POS
registers. The system setup procedure is responsible for
loading the values from the ADF file to nonvolatile system
memory. The system is also responsible for conflict check-
ing of keywords. During the system POR setup procedure,
the values for an adapter’s POS registers are read from the
nonvolatile RAM and written to the adapter. i

Note:

1. Current PS/2 setup software is not capable of accessing
or utilizing the POS sub-address feature. Instead, the
adapter programmer must either incorporate the load-
ing of these registers in either the device driver or as a
separate executable program.

2. The GO bit MUST be set by the LP before the MIC can
respond to any MC activity, this INCLUDES POS
registers. The GO bit MUST be set within 1 msec from
system POS or the MIC will indicate a NOT READY
condition on the MC.

3. A System Reset or STI Reset Instruction to the MIC
will cause the contents of all POS Registers which
contain a default state, to return to their default states.

POS 0/1 and VPD Initialization

Information required for POS registers 0 and 1, as well as
the VPD is located in LPS. The VPD LPB Base Address
register, defines the starting address where the values for
POS reg 0/1 and VPD can be found. This base address
register MUST be initialized before the system setup soft-
ware accesses these registers.

‘When the system setup procedure reads either POS reg-

20

25

30

35

40

55

60

65

50

ister 0, 1 or the VPD registers, the MIC will fetch the
required data from LPS using the VPD base address. This
operation requires that the MIC arbitrate for the LPB and
become a LPB Master. The adapter designer must guarantee
that the MIC can access this data within 1 msec, per MC
specifications.

Testability Interface

The STI is used as a serial test interface to the MIC. The
STI allows access to the MIC’s Self Test and Scan control
logic. Having access and control to registers and functions
allows for improved test and debug of the MIC. The STI
allows for two different operations to be performed;

1. Instruction/Status Operation

2. Scan Operation

These modes allow the capability for self-testing to be
performed. Self-test can be used to determine the state or
health of the MIC chip itself.

Self-test

Self-test verifies a large percentage of the MIC’s internal
logic by using internal scan strings, clock control logic, a
Random Pattern Generator (RPG) and a Multiple Input
Signature Register (MISR). Using a known starting value
within the RPG, a signature can be generated in the MISR
which reflects the state or health of the MIC chip itself.

What has been described is a queue pointer manager
providing a queue management facility partially imple-
mented in hardware, resulting in a relatively inexpensive
queuing mechanism with increased performance over a
software managed queue structure.

Although a specific embodiment of the invention has been
disclosed, it will be understood by those having skill in the
art that changes can be made to that specific embodiment
without departing from the spirit and the scope of the
invention.

What is claimed is:

1. In a data processing system, a queue management
subsystem for transferring data between a system bus and a
remote bus, comprising:

a local data processor coupled to a local data bus and
coupled to a memory address bus, for executing stored
program instructions;

a local addressable memory having an address input
coupled to said memory address bus and a data port
coupled to said local data bus, for storing data from said
local data bus in reconfigurable queunes at locations
identified by addresses on said address bus;

said local addressable memory having a total number of
2**T bytes, where T is a number of address lines to the
local addressable memory, said local addressable
memory partitioned for storing a total number of I
reconfigurable queues, where I has a binary value
represented by an integer from 1 to 2**N, each recon-
figurable queue containing program instructions for
controlling read and write operations, with an Ith queue
having 2**P elements, each element therein containing
2**M bytes, where P=T-N-M;

stored program instructions in said Ith queue of said local
addressable memory for controlling read or write
operations;

a register file having an address input coupled to said
‘memory address bus and a data port coupled to said
local data bus, for storing queue pointer address values

5,459,839

51
at locations identified by addresses on said address bus;

said register file having 2**N registers, each said register
including a queue read pointer field, a queue read
pointer status field, a queue write pointer field, a queue
write pointer status field and queue byte count field,
with an Ith register in said register file having P bits in
an Ith queue read pointer field as a read pointer value,
P bits in an Ith queue write pointer field as a write
pointer value and a value representing 2**M in an Ith
byte count field;
said local data processor reading said Ith queue write
pointer value from said queue write pointer status field
and constructing a memory address by concatenating
the binary value of I with said Ith queue write pointer
value, and accessing said memory with the resulting
write address, to store 2**M bytes of data from said
data bus into an element of said Ith queue in said
memory;
said local data processor adding said value of 2**M to
said Ith queue write pointer value, forming a next Ith
queue write pointer value; and
a comparator means coupled to said queue read pointer
field, for comparing the relative magnitude of a queue
read pointer value in said Ith queue read pointer field
with said next Ith queue write pointer value, indicating
a valid status in said queue write pointer status field if
the comparison is not equal and storing said next Ith
queue write pointer value in said Ith write pointer field.
2. The queue management subsystem of claim 1, wherein:
when the comparison from the comparator means is equal,
the comparator means indicates a full status in said queue
write pointer status field and omits storing said next Ith
queue write pointer value in said Ith queue write pointer
field.
3. The queue management subsystem of claim 1, wherein:

said local data processor reading said Ith queue read
pointer value from said register file and constructing a
memory address by concatenating the binary value of I
with said Ith queue read pointer value, and accessing
said memory with a resulting read address, to transfer
2%*M bytes of data to said data bus from an element of
said Ith queue;

said local data processor adding said value of 2**M to
said Ith queue read pointer value, forming a next Ith
queue read pointer value;

said comparator means comparing the relative magnitude
of an Ith queue write pointer value in said Ith queue
write pointer field with said next Ith queue read pointer
value, indicating a valid status in said queue read
pointer status field if the comparison is not equal and
storing said next Ith queue read pointer value in said Ith
read pointer field.

4. The queue management subsystem of claim 3, wherein:

when the comparison from the comparator means is
equal, the comparator means indicates an empty status
in said queue read pointer status field and omits storing
said next Ith queue read pointer value in said Ith queue
read pointer field.

5. The queue management subsystem of claim 3, wherein:

said Ith register in said register file includes an assigned
interrupt level value for said local data processor, when
said Ith queue contains data in at least one of said
elements thereof. .

6. The queue management subsystem of claim 5 wherein:

said local data processor is coupled to a second data bus

20

25

30

40

45

60

65

52

which is coupled to a first high speed data device;

said local data processor is coupled to a third data bus
which is coupled to a second high speed data device;
said local data processor sensing said assigned interrupt
level value in said Ith register and in response thereto,
fetching said stored program instructions from said Ith
queue for execution thereof to control data flow
between said second data bus and said third data bus;
7. The queue management subsystem of claim 6, wherein:

said second data bus is a micro channel.
8. The queue management subsystem of claim 6, wherein:

said queue management subsystem occupies a unitary
circuit card onto which is mounted said local data
processor, said addressable memory and said register
file. .

9. The queue management subsystem of claim 7, wherein:

when the comparison from the comparator means is
equal, the comparator means indicates a full status in
said queue write pointer status field and omits storing
said next Ith queue write pointer value in said Ith queue
write pointer field.

10. The queue management subsystem of claim 9,

wherein:

when the comparison from the comparator means is
equal, the comparator means indicates an empty status
in said queue read pointer status field and omits storing
said next Ith queue read pointer value in said Ith queue
read pointer field.

11. In a data processing system, a queue management

method for transferring data between a system bus and a
remote bus, comprising the steps of:

executing stored program instructions in a local data
processor coupled to a local data bus and coupled to a
memory address bus;

storing data from said local data bus in reconfigurable
queues at locations identified by addresses on said
address bus, in a local addressable memory having an
address input coupled to said address bus and a data
port coupled to said local data bus;

partitioning said local addressable memory having a total
number of 2**T bytes, where T is a number of address
lines to the local addressable memory, said local
addressable memory partitioned for storing a total
number of I reconfigurable queues, where I has a binary
value represented by an integer from 1 to 2**N, each
reconfigurable queue containing program instructions
for controlling read and write operations, with an Ith
queue having 2**P elements, each element therein
containing 2**M bytes, where P=T-N-M,

storing program instructions in said Ith queue for con-
trolling read or write operations;

storing queue pointer address values at locations identi-
fied by addresses on said memory address bus, in a
register file having an address input coupled to said
address bus and a data port coupled to said local data
bus;

partitioning said register file into 2**N registers, each
said register including a queue read pointer field, a
queue read pointer status field, a queue write pointer
field, a quene write pointer status field and queue byte
count field, with an Ith register in said register file
having P bits in an Ith queue read pointer field as a read
pointer value, P bits in an Ith queue write pointer field
as a write pointer value and a value representing 2**M
in an Ith byte count field;

5,459,839

53

reading said Ith queue write pointer value from said queue
write pointer status field and constructing a memory
address by concatenating the binary value of I with said
Ith queue write pointer value, and accessing said
memory with the resulting write address, to store 2**M
bytes of data from said data bus into an element of said
Ith queue;

adding said value of 2**M to said Ith queue write pointer
value, forming a next Ith queue write pointer value; and

comparing the relative magnitude of a queue read pointer
value in said Ith queue read pointer field with said next
Ith queue write pointer value, indicating a valid status
in said queue write pointer status field if the compari-
son is not equal and storing said next Ith queue write
pointer value in said Ith write pointer field.

12. The queue management method of claim 11, which

further comprises the steps of:

indicating in said write pointer status field a full status and
omitting storing said next Ith queue write pointer value
in said Ith write pointer field if said comparison is
equal.
13. The queue management method of claim 11, which
further comprises the steps of:

reading from said register file said Ith queue read pointer
value and constructing a memory address by concat-
enating the binary value of I with said Ith queue read
pointer value, and accessing said memory with the
resulting read address, to transfer 2*¥*M bytes of data to
said local data bus from an element of said Ith queue;

adding said value of 2**M to said Ith queue read pointer
value, forming a next Ith queue read pointer value;

comparing the relative magnitude of an Ith queue write
pointer value in said Ith queue write pointer field with
said next Ith queue read pointer value, indicating a
valid status in said read pointer status field if the
comparison is not equal and storing said next Ith queue
read pointer value in said Ith read pointer field.

14. The queue management method of claim 13, which
further comprises the steps of: indicating in said read pointer
status field an empty status and omitting storing said next Ith
queue read pointer value in said Ith read pointer field if said
comparison is equal.

15. The queue management method of claim 13, which

20

25

30

35

40

54

further comprises the steps of:

including in said register file in said Ith register, an
assigned interrupt level value for said local data pro-
cessor, when said Ith queue contains data in at least one
of said elements thereof.

16. The queue management method of claim 15, which

further comprises the steps of:

storing in said Ith queue further stored program instruc-
tions for calculating a valid status field for the read and
write pointer status fields.

17. The queue management method of claim 16, which

further comprises the steps of:

coupling said local data processor to a second data bus
which is coupled to a first high speed data device;

coupling said local data processor to a third data bus
which is coupled to a second high speed data device:

sensing said assigned interrupt level value in said Ith
register and in response thereto, fetching said program
instructions from said Ith queue for execution thereof
by said local data processor to control data flow
between said second data bus and said third data bus.
18. The queue management method of claim 17, wherein:

said second data bus being a micro channel.
19. The queue management method of claim 17, wherein:

said queue management method being performed on a
unitary circuit card onto which is mounted said local
data processor, said addressable memory and said reg-
ister file.

20. The queue management method of claim 18, wherein

the steps of:

indicating in said write pointer status field a full status and
omitting storing said next Ith queue write pointer value
in said Ith write pointer field if said comparison is
equal.

21. The queue management method of claim 20, wherein

the steps of:

indicating in said read pointer status field an empty status
and omitting storing said next Ith queue read pointer
value in said Ith read pointer field if said comparison is
equal.

