Personal Computer

BASIC
HANDBOOK

General Programming
Information

6361129

Personal Computer

THTH

||
]

BASIC
HANDBOOK

General Programming
Information

(Third edition - May, 1984)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: International Business Machines Corporation
provides this manual “as is,” without warranty of any kind, either expressed or implied,
including, but not limited to, the particular purpose. 1BM may make improvements and/or
changes in the product(s) and/or the program(s) described in this manual at any time.

This product could include technical inaccuracies or typographical errors. Changes are
periodically made 1o the information herein: these changes will be incorporated in new
editions of the publication.

ILis possible that this material may contain reference to, or information about, IBM
products (machines and programs). programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this product and for
technical information about the system should be made to your authorized IBM Personal
Computer dealer.

The following paragraph applies only to the United States and Puerto Rico: A Reader’s
Comment Form is provided at the back of this publication. If the form has been removed,
address comments to: IBM Corp.. Personal Computer, P.O. Box 1328-C, Boca Raton,
Florida 33432, IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligations whatever,

© Copyright International Business Machines Corporation 1982 1983 1984

Preface

The IBM Personal Computer offers three upwardly
compatible versions of the BASIC interpreter:
Cassette, Disk, and Advanced. This BASIC Handbook
and the companion volume, the BASIC Reference, are
references for these three versions of BASIC — and for
the various releases of BASIC, beginning with 1.0.

It is important for you to know that these books are
written only as references for the BASIC programming
language, not as textbooks that will teach you how to
program. If you need step-by-step instruction in
learning to program in BASIC, we suggest that you ask
for the materials you need at your library, bookstore, or
computer store.

This book contains general information about using
BASIC. There are sections that will help you get
started using BASIC, and there are some sections that
contain information on advanced subjects for the
experienced programmer.

The BASIC Reference is an encyclopedia-type manual.
It contains, in alphabetic order, the syntax and
semantics of every command, statement, and function
in BASIC.

These two BASIC books are extensively
cross-referenced and indexed. Each also includes
appendixes of useful information. In addition, there is a
Quick Reference that lists all the BASIC commands,
statements, and functions, categorized by task.

Note: If you have an IBM PCjr, use the BASIC
book specifically for the PC/r rather than these
books.

The IBM Personal Computer BASIC Compiler is an
optional software package that is available at your
computer store. If you have the BASIC Compiler,
use the IBM Personal Computer BASIC Compiler
book in conjunction with this book and the BASIC
Reference.

Related Publications

The following books contain related information that
you may find useful:

The IBM Personal Computer Guide to Operations.

The IBM Personal Computer Disk Operating
System.

The IBM Personal Computer Disk Operating System
Technical Reference.

The IBM Personal Computer Technical Reference.

Summary of Changes

This summary first lists the changes that were made in
BASIC release 2.0, and then lists the BASIC release
3.0 changes.

Changes in BASIC 2.0 and BASIC 2.1

The changes that were made in BASIC release 2.0 are
briefly described in the material that follows.

Three enhancements were made to the BASIC
command line:

— The optional parameter max blocksize was added
to the /M: switch, allowing you to reserve space
beyond BASIC’s data segment for assembly
language subroutines.

— The ATN, COS, EXP, LOG, SIN, SQR, and
TAN functions now allow you to calculate in
double precision by specifying /D in the BASIC
command line.

— You can redirect standard input and standard
output by specifying <stdin or >stdout in the
BASIC command line. stdin (redirect standard
input) stdout (redirect standard output)

Pressing Ctrl-PrtSc causes text sent to your screen
to also be sent to your system printer.

The filespec syntax was expanded to allow the
specification of a path for a device or file. All
commands and statements that accept filespec also
accept parh. The commands that allow paths are

vi

BLOAD, BSAVE, KILL, LOAD, MERGE,
NAME, RUN, and SAVE. The statements that
allow paths are CHAIN and OPEN.

The DELETE command syntax was expanded to
allow line deletions from the specified line to the
end of the program.

The PE option was added to the OPEN “COM...
statement syntax to allow for parity checking.

The PLAY statement has two new options. (For
use in Advanced BASIC only.)

— >n raises the octave and plays note n.
— <n lowers the octave and plays note n.

The DRAW statement has two new options. (For
use in Advanced BASIC only.)

— TA(n) turns angle n from -360 to 360 degrees.

— P paint,boundary sets figure color and border
color.

The POINT function allows the form v=POINT(n),
which returns the value of the current x or y
graphics coordinate. (For use in Advanced BASIC
only.)

The RANDOMIZE statement allows
double-precision expressions.

The LINE statement has a new option, style, which
uses hexadecimal values to plot a pattern of points
on the screen. (For use in Advanced BASIC only.)

The PAINT statement has a new feature, tiling,
which allows you to paint an area with a pattern
rather than just a solid color. (For use in Advanced
BASIC only.)

The ON KEY(n), KEY(n), and KEY statements
now allow trapping of six additional definable keys,
15-20. (For use in Advanced BASIC only.)

The GET and PUT statements were enhanced to
allow record numbers in the range | to 16,777,215
to accommodate large files with short record
lengths.

EOF(0) returns the end-of-file condition on
standard input devices used with redirection of 1/0.

The LOF function returns the actual number of
bytes allocated to a file.

The graphics statements CIRCLE, DRAW, LINE,
PAINT, POINT, PSET, PRESET, VIEW, and
WINDOW now use line clipping instead of
wraparound.

Three new functions were added:

The PLAY (n) function returns the number of notes
currently in the Music Background (MB) buffer.
(For use in Advanced BASIC only.)

The PMAP function maps an expression to world or
physical coordinates. (For use in Advanced BASIC
only.)

The TIMER function returns the number of seconds
that have elapsed since midnight or System Reset.

Four new statements were added:

The ON PLAY statement allows continuous music
to play while a program is running. (For use in
Advanced BASIC only.)

The ON TIMER statement transfers control to a
given line number in a BASIC program when a
defined period of time has elapsed. (For use in
Advanced BASIC only.)

vii

viii

The VIEW statement lets you define a viewport (or
area) within the physical limits of the screen. (For
use in Advanced BASIC only.)

The WINDOW statement lets you redefine the
coordinates of the screen or viewport. (For use in
Advanced BASIC only.)

Three new commands were added:

°

The CHDIR command allows you to change the
current directory.

The MKDIR command creates a directory on the
specified disk.

The RMDIR command removes a directory from
the specified disk.

Changes in BASIC 3.0

The following changes have been made in BASIC
release 3.0:

« Device support allows BASIC to communicate with
user-installed device drivers through the IOCTL
statement and IOCTLS function.

. TOCTL and IOCTLS are used to get information to
and from device channels.

. ENVIRON statement and ENVIRONS function
allow you to modify parameters in BASIC’s
environment table.

« ERDEV and ERDEVS$ are device error variables
that allow you to read INT 24 error codes.

« SHELL allows you to execute DOS commands and
run child processes from BASIC.

Note: The terms “disk,” “diskette,” and “fixed
disk™ are used throughout this book. Where
“diskette” is used, it applies only to diskette drives
and diskettes. Where “fixed disk™ is used, it applies
only to the IBM nonremovable fixed disk drive.
Where “disk” is used, it applies to both fixed disks
and diskettes.

ix

Contents

Chapter 1. The Versions of BASIC 1-1
The Versions of BASIC 1-3
Cassette BasiC . ..o v vvvviinnneneeeenon 1-4
DISEBASIC :ous o oummnmsv e s 00 40 spmimmsne 1-5
Advanced BASICo 1-5

Chapter 2. How to Start and Use BASIC wcssssses 2-1
Getting BASIC Started 2-3

To Start Cassette BASIC 2-3
To:Start Disk BASIC' . cavwa s asena 2-3
To Start Advanced BASIC 2-4
Returning to DOScoovnn 2-4

Options in the BASIC Command Line . 2-4
Redirection of Standard Input and Output . 2-12

Modes of Operationc..ovonnn 2-14
The Keyboardcooouieienn 2-15
Function Keyscconuivennn 2-15
Special Key Combinations 2-15
The BASIC Program Editor 2-18
Special Program Editor Keys 2-18
Correcting the Current Line 2-24

Entering or Changing a BASIC Program 2-26
Editing a Program Line on the Screen ~ 2-26

Syntax EITOrscovmmennes 2-28
Running a BASIC Program 2-29
SAMPLES Program 2-29
COMM Programcooovnn 2-31
Running a BASIC Program From
Another Diskette 2-32

Chapter 3. General Information about Programming

TRBASTIC . ocons s 555586 WaEame s & v 5 s ns wnee 3-1
Line FOTIAT « o« « o o mmmmes 58 5 6 4 6 5 § 5 = & s 3-3
Character SBt . oo v o ve e e o cun s maas 3-4
Reserved Words . .o v v v i e o 3-6
COTSTANLS & o s« 5 4 corarns s s v s oo wsas s smsias 3-8

Numeric Precisioncounn 3-12

xi

How BASIC Converts Numbers from One

Precision to Another 3-14
Variables -cooviiiinn e mmmmmrrsssnss 3-17
How to Name a Variable 3-17
How to Declare Variable Types 3-18
AITays 3-19
Techniques for Formatting Your Output .. 3-22
Numeric Expressions and Operators 3-23
Arithmetic Operators 3-24
Relational Operators 3-25
Logical Operators 3-27
Numeric Functions 3-31
Order of Execution 3-32
String Expressions and Operators 3-34
Concatenation 3-34
String Functions 3-34
Inputand OQutput 3-35
g P 3-35

File Number 3-35
Filename 3-36
Device Nameco00000000.s 3-38
Naming Files 3-39
Types of Directories 3-42
Tree-Structured Directories 3-43
Device Support 3-44
Screen Displays 3-46
Appendix A. BASIC Disk Input and Output A-3
Specifying Filenames A-4
Commands for Program Files A-4
Disk Data Files - Sequential and Random 1/0 A-4
Sequential Files A-4
Random Files A-T7
Appendix B. Memory Information B-1
MemoryMap B-2
How Variables Are Stored B-3
Keyboard Buffer B-5
Search Order for Adapters B-5
Switching Displays B-6

Chapter 1. The Versions of BASIC

Contents

The Versions of BASIC iiniiiiiinnnns
Cassette Basie . vo o s vowm s s aoeses s mme
Disk BASTC oo vers 56 smdsemndssssss s eaaaanm

Advanced BASIC ..o i it it ininrnannnnnns

1-1

1-2

The Versions of BASIC

IBM offers three versions of the BASIC interpreter for
the Personal Computer:

« Cassette
« Disk
« Advanced

The three versions of BASIC are upwardly compatible;
that is, Disk BASIC does everything Cassette BASIC
does, plus a little more, and Advanced BASIC does
everything Disk BASIC does, plus a little more. The
differences between the versions are discussed further
on in this section.

All three versions of BASIC include these features:

. Extended character set. You can display 256
different characters— the usual letters, numbers,
and symbols, plus international characters and other
symbols such as Greek letters used in scientific and
mathematical applications.

« Graphics capability. If you have the
Color/Graphics Monitor Adapter, you can draw
points, lines, and entire pictures. The screen is all
points addressable in either medium or high
resolution. See Chapter 3, as well as the BASIC
Reference, for more information.

« Special input/output device support. You can use
sound, a light pen, and joysticks, to make your
programs more interesting and more fun.

The commands, statements, and functions for all three
versions of BASIC are described in detail in the BASIC
Reference manual. Included in each description is a
“Versions” line that specifies the versions of BASIC
that support the command, statement, or function.

Versions:

For example, if you look under “CHAIN Statement” in
the BASIC Reference, you will note that it says:

Cassette Disk Advanced Compiler
sk ok ok (¥%)

The asterisks show which versions of BASIC support
the statement. This example shows that you can use
the CHAIN statement for programs written in the Disk
and Advanced versions of BASIC.

In this example you will notice that the asterisks under
the word “Compiler” are in parentheses. This means
that there are differences between the way the
statement works under the BASIC interpreter and the
way it works under the IBM Personal Computer BASIC
Compiler. The IBM Personal Computer BASIC
Compiler is an optional software package available
from IBM. The BASIC Compiler manual explains these
differences.

Cassette Basic

The nucleus of BASIC is the Cassette version, which is
built into your IBM Personal Computer in 32K-bytes of
read-only storage. You can use Cassette BASIC with
any IBM Personal Computer, regardless of the amount
of random access memory the computer has. The
amount of storage you can use for programs and data
depends on how much memory is in your Personal
Computer. The number of “bytes free” is displayed
after you switch on the computer.

The only storage device you can use to save Cassette
BASIC information is a cassette tape recorder. You
cannot use diskettes with Cassette BASIC.

Disk BASIC

This version of BASIC is a program on the IBM
Personal Computer Disk Operating System (DOS)
diskette. DOS is an IBM software product that is
available separately. You load Disk BASIC from the
DOS diskette before you use it. The amount of storage
you can use for programs and data is displayed on the
screen when you start BASIC.

Special features of Disk BASIC are:

« Input/output to disk in addition to cassette. See
Appendix A for more information.

« An internal clock that keeps track of the date and
time.

« Asynchronous communications (RS232) support.
See Appendix C in the BASIC Reference for more
information.

« Support for two additional (total of three) printers.

Advanced BASIC

Advanced BASIC is the most extensive form of BASIC
available for the IBM Personal Computer. Like Disk
BASIC, it is a program on the IBM DOS diskette, and
you must load into memory before you use it. As with
the other versions, the number of free bytes you have
for programs and data is displayed on the screen when
you start BASIC.

1-5

1-6

Key features found only in Advanced BASIC are:

Event trapping. A program can respond to the
occurrence of a specific event by “trapping”
(automatically branching) to a specific program line.
Events that can be trapped include:
communications activity, a function key being
pressed, the button being pressed on a joystick, play
activity, timer activity and the light pen being
activated.

Advanced graphics. Additional statements
(CIRCLE, DRAW, GET, PAINT, PMAP, POINT,
PSET, PUT, VIEW, and WINDOW) make it easier
to create complex graphics scenes.

Advanced music support. The PLAY statement
makes it easy to use the built-in speaker to create
musical tones.

Chapter 2. How to Start and Use BASIC

Contents
Getting BASIC Started«..convmenviasess 2-3
To Start Cassette BASIC ... ccnnsiiianas 2-3
To Start Disk BASIC i avsssnamesavaness 2-3
To Start Advanced BASIC 2-4
Returningto DOS 2-4
Options in the BASIC Command Line 2-4
Redirection of Standard Input and Output 2-12
Modes of Operationcoivveieerenn 2-14
Direet Mode:uus005 s smmmeawmassa 2-14
Indirect Modeuannmemsavessann 2-14
The Kéyboard oeveicasessvinomvmmmasasoass 2-15
Function Keysc.ivimmrvvavunan 2-15
Special Key Combinations 2-15
ALTEKEY . .ovvesnannemmmencssseaan 2-16
CIlKeY worcasvivsssniemumerssriass 2-16
Ctrl-Breakcc.vmmuwueeeesis 2-17
Ctrl-PrtSc 2-17
The BASIC Program Editor 2-18
Special Program Editor Keys 2-18
Correcting the Current Line 2-24
Entering or Changing a BASIC Program 2-26
Editing a Program Line on the Screen 2-26
Syntax Errors e 2-28
Running a BASIC Program 2-29
SAMPLES PIOSIEM. wcvwmaynnssossaii s 2-29
COMM Progtam sissssssmsconiesssasss 2-31
Running a BASIC Program From Another
Diskette i 2-32
With One Diskette Drive 2-32
With More Than One Diskette Drive 2-32

2-2

Getting BASIC Started

It’s easy to start BASIC on the IBM Personal
Computer:

To Start Cassette BASIC

Important: Use Cassette BASIC only if you do not have
any type of disk with your system. If you have a disk
system, use Disk BASIC or Advanced BASIC.

If your computer is off:

Switch on the computer.

The words “Version C” and the release number are
displayed along with the number ol free bytes.

If your computer is on:
1. Make sure there is no diskette in drive A.

2. Press and hold down the Ctrl and Alt keys while
you press the Del key,

The words “Version C™" and the release number are
displayed along with the number of free bytes.

To Start Disk BASIC
1. Insert the IBM DOS diskette into drive A.

2. Switch on the computer.

3. When you see the DOS prompt (A>), enter the
command BASIC

The words “Version D and the release number are
displayed along with the number of free bytes.

To Start Advanced BASIC

1. Insert the IBM DOS diskette into drive A.
2. Switch on the computer.

3. When you see the DOS prompt (A>), enter the
command BASICA

The words “Version A" and the release number are
displayed along with the number of free bytes.

Returning to DOS

Al times you may want to return to DOS after running

a BASIC program; for example, you may want to

change from Disk BASIC to Advanced BASIC.

To return to DOS from BASIC:

I. When BASIC prompts you for a command, type:
SYSTEM

then press the Enter key.

2. When you see the DOS prompt, DOS is ready for
you Lo give it a command.

For more information, see “SYSTEM Command” in
the BASIC Reference.

Options in the BASIC Command Line

2-4

You can include options in the BASIC command line
when vou start Disk BASIC or Advanced BASIC.
These options specify the amount of storage you want
BASIC to use for programs and data, and for buffer
areas. You can also tell BASIC to immediately load
and run a program.

But these options are not required—BASIC works just
fine without them. So if you’re new to BASIC, you
may wish to skip over this section, which has been
written for experienced BASIC programmers, and go
on to the section called “Modes of Operation.” Then
you can refer back to this section when you become
more familiar with BASIC.

The complete format of the BASIC command is:

BASIC[A] [filespec] [<stdin] | >] [>stdout] | /F:files]
[/S:bsize]| [/ C:combuffer] [/M:|max workspace] [,max
blocksizel] [/D]

In this syntax, the following conventions are used:

« Words in capital letters are keywords and must be
entered as shown, except that they may be entered
in any combination of uppercase (capital letters)
and lowercase (small letters). BASIC converts
words to uppercase unless they are part of a quoted
string, remark, or DATA statement.

» You must supply any items shown in lowercase italic
letters.

« Items in square brackets ([]) are optional.

« An ellipsis (...) indicates that an item may be
repeated as many times as you wish.

« All punctuation except square brackets (such as
commas, parentheses, semicolons, hyphens, or equal
signs) must be included where shown.

An explanation of the options follows.

filespec This option names a program that is to be
loaded and run immediately by BASIC.
BASIC will proceed as if a RUN
<filename> were given after initialization
was complete. In BASIC 2.0 and later
releases, filespec is expanded to allow you

2-5

2-6

<stdin

>stdout

to specify a path. It must conform to the
rules for specifying files described in
Chapter 3. A default extension of .BAS is
used if none is given. This allows BASIC
programs to be run in batch processing
mode by putting this form of the command
line in an AUTOEXEC.BAT file.
Programs run in this manner should be
exited with the SYSTEM command so that
the next command for the
AUTOEXEC.BAT file can be executed.
Note that when you specify filespec, the
BASIC heading with the copyright notices
is not displayed.

A BASIC program normally receives its
input from the keyboard (standard input
device). Using <sidin allows BASIC to
receive input from a file you specify.
When you use <sidin, you must place it
before any switches in the command line.
(A switch is an option beginning with a
slash (/) that is used to specify
parameters.) Refer to “Redirection of
Standard Input and Output™ later in this
chapter for more information. (For use in
BASIC 2.0 and later releases.)

A BASIC program normally writes its
output to the screen (standard output
device). Using >stdout allows BASIC to
write output to a file or device you specify.
When you use >stdout, you must place it
before any switches in the command line.
Refer to “Redirection of Standard Input
and Output™ later in this chapter for more
information. (For use in BASIC 2.0 and
later releases.)

/F:files

/S:bsize

The following options in the BASIC
command line are switches:

This switch sets the maximum number of
files that can be open at any one time
during the running of a BASIC program.
Each file requires 62 bytes of memory for
the file control block (FCB), plus 128
bytes for the data buffer. The size of the
data buffer can be altered with the /S:
switch. If the /F: switch is omitted, the
number of files defaults to 3. The actual
number of files that can be open
simultaneously depends upon the value of
the FILES= parameter in the DOS
configuration file, CONFIG.SYS. The
maximum value for FILES= is 15. The
default value for FILES= is 8. The first
three file handles are taken by stdin, stdout,
stderr, stdaux, and stdprn. One additional
handle is needed by BASIC for LOAD,
SAVE, CHAIN, NAME, and MERGE.
So when FILES=1§, 6 are left for BASIC
file I/O. Thus /F:6 is the maximum to
give when FILES=10 and you want to be
able to have all files open at once.

If you attempt to OPEN a file after all the
file handles have been exhausted, a Too
many files error will result.

This switch sets the buffer size for random
files. The record length parameter on the
OPEN statement cannot exceed this value,
The default buffer size is 128 bytes. The
maximum value you can enter is 32767
bytes.

2-7

/C:combuffer
This switch sets the size of the buffer for
receiving data when you are using an
Asynchronous Communications Adapter.
This switch has no effect unless you have
an Asynchronous Communications Card
on your system. The buffer for
transmitting data with communications is
always allocated to 128 bytes. The
maximum value you can enter for the /C:
switch is 32767 bytes. If the /C: switch is
omitted, 256 bytes are allocated for the
receive buffer.

If you have a high-speed line, we suggest
you use /C:1024. If you have two
Asynchronous Communications Adapters
on your system, both receive buffers are
set to the size specified by this switch.
You can disable RS232 support by using a
value of zero (/C:#), in which case no
buffer space will be reserved for
communications, and communications
support will not be included when BASIC
is loaded. Any subsequent
communications 1/0 attempts will result in
a Device unavailable error.

/M:max workspace
This switch sets the highest memory
location that can be used by BASIC.
BASIC will attempt to allocate 64K of
memory for the data and stack segments.
If you are going to use assembly language
subroutines with BASIC, you can use the
/M: switch in the BASIC command line.

For example, /M:32768 allocates 32768
bytes for BASIC’s data and stack segments
and allows you to use the other 32768
bytes for assembly language routines if you
wish. For more information, see the
BASIC memory map in the section on
calling assembly language subroutines
from BASIC in Appendix B of the BASIC
Reference.

:max blocksize
If you intend to load routines above the
highest location that BASIC can address
(65536), you should specify the option
max blocksize to reserve space for them.
This is necessary if you intend to use the
SHELL statement. (For more information
see “SHELL Statement” in the BASIC
Reference.) Failure to use max blocksize
could result in COMMAND.COM being
loaded on top of your routines when a
SHELL statement is executed.

The option :max blocksize specifies the
maximum number of paragraphs allocated
for BASIC, plus the space beyond the
stack that you want to use for assembly
language subroutines. Paragraphs are
blocks of 16 bytes each. When max
blocksize is omitted, &H1PHH (4096) is
assumed, and 65536 (4096 * 16) bytes are
allocated for BASIC’s data and stack
segments.

For example, if you want 65536 bytes for
BASIC and 512 bytes for assembly
language subroutines, then use

/M:, &H1028 (4096 paragraphs for
BASIC + 32 paragraphs for your
routines).

2-9

/M:,2048 tells BASIC to allocate and use
2048 paragraphs (32768 bytes) for the
data and stack segments.

/M:32008,2048 says to allocate 32768
bytes maximum, but BASIC will use only
the lower 32000. This leaves 768 (32768 -
32000) bytes reserved for your use. (For
use in BASIC 2. and later releases.)

/D This switch causes the double-precision
mathematics functions to remain resident.
When you specify /D, approximately
300H additional bytes are resident in
BASIC for use by the transcendental
functions. The functions that can be
converted (o double precision are: ATN,
COS, EXP, LOG, SIN, SQR, and TAN. If
/D is omitted, the double-precision
function is disregarded, and the space is
freed for program use. (For use in BASIC
2.0 and later releases.)

Note: The options files, max workspace, max
blocksize, bsize, and combuffer can be expressed in
decimal, octal (preceded by &O), or hexadecimal
(preceded by &H).

Some examples of the BASIC command line:
BASIC PAYROLL

Uses 64K of memory and 3 files; loads and executes
PAYROLL.BAS.

BASICA INVENT/F:6
Uses 64K of memory and 6 files; loads and executes

INVENT.BAS. (You must change the CONFIG.SYS
file to FILES=10 if you want to use 6 files.)

BASIC /C:0/M:32768

Disables R§232 support and uses only 32K of memory
for BASIC workspace.

BASIC /F:4/5:512

Uses 4 files and allows a maximum record length of 512
bytes.

BASIC TTY/C:512
Uses 64K of memory and 3 files; allocates 512 bytes to

RS5232 receive buffers and 128 bytes to transmit
buffers; loads and executes TTY.BAS.

2-11

Redirection of Standard Input and
Output

In BASIC 2.0 and later releases, you can redirect
BASIC input and output. Standard input, normally
read from the keyboard, can be redirected to any file
you specify in the BASIC command line. Standard
output, normally written to the screen, can be
redirected to any file or device you specily in the
BASIC command line.

BASIC filespec | <stdin| [>] [>stdout]
Notes:

« When redirected, all INPUT, INPUTS, INKEYS,
and LINE INPUT statements read from the
specified input file, instead of from the keyboard.

« When redirected for input and output, all PRINT
statements and error messages write to the specified
output file or device, instead of to the screen.

« When a file is redirected only for output, any data
that appears on the screen will go to the specified
output file.

« When only output is redirected, error messages g0
both to the screen and to the specified output file.
All files are closed, the program ends, and control
returns to DOS.

« File input from “KYBD:" is still read from the
keyboard.

« File output to “SCRN:" still goes to the screen.

« BASIC continues to trap keys when an ON KEY(n)
statement is specified.

« Ctrl-PrtSc does not give a printed copy ol the
screen when standard output is redirected.

« Ctrl-Break goes to standard output, closes all files,
and returns control to DOS.

Some examples of redirection of [/0:

BASIC MYPROG >DATA.OUT

In the example above, data read by INPUT, INPUTS,
INKEYS, and LINE INPUT will continue to come from
the keyboard. All screen output will go into the
DATA.OUT file. This includes all data printed to the
screen with the PRINT statement, any error messages
that BASIC prints to the screen, and any data entered
in direct mode.

BASIC MYPROG <DATA.IN

Data read by INPUT, INPUTS, INKEYS, and LINE
INPUT will come from the DATA.IN file. Data written
by PRINT will continue to go to the screen.

BASIC MYPROG <MYINPUT.DAT >MYQUTPUT.DAT

Data read by INPUT, INPUTS, INKEYS$, and LINE
INPUT will come from the MYINPUT.DAT file and
data written by PRINT will go into the
MYOUTPUT.DAT file.

BASIC MYPROG <\SALES\JOHN\TRANS.>>\SALES\
SALES.DAT

Data read by INPUT, INPUTS, INKEYS, and LINE
INPUT will come from the \SALES\JOHN\TRANS
file. Data written by PRINT will be appended to the
\SALES\SALES.DAT file.

Modes of Operation

2-14

Once BASIC is started and displays the prompt Ok, it is
ready to receive instructions from you. This state is
referred to as command level. You can communicate
with BASIC in either of two modes: direct mode or
indirect mode.

Direct Mode

In direct mode, you instruct BASIC to perform your
request immediately after it is entered. You do this by
omitting the line number from the the statement or
command. You can display results of arithmetic and
logical operations immediately or store them for later
use, but the instructions are not saved after they are
executed. This mode is useful for debugging as well as
for quick computations that do not require a complete
program. For example:

PRINT

~N)

™o

B+7

N 0

™~

Indirect Mode

In indirect mode, you tell BASIC that the line you are
entering is part of a program. To do this, you begin the
line with a line number. The line is then stored as part
of the program in memory. The stored program is
executed by entering the RUN command. For example:

1 PRINT 20+2
RUN
2

The Keyboard

The keyboard is divided into three general areas:

Ten function keys, labeled F1 through Fi, are on
the left side of the keyboard.

The “typewriter” area is in the middle. This is where
you find the regular letter and number keys.

The numeric keypad, similar to a calculator
keyboard, is on the right side.

General use of the keyboard is described in the Guide to
Operations. The following paragraphs describe specific
keyboard use for BASIC.

Function Keys

The function keys can be used:

As “soft keys.” That is, you can set each key to type
automatically any sequence of of up to 15
characters. Some frequently used commands have
already been assigned to these keys. You can
change these if you wish. See “KEY Statement” in
the BASIC Reference for details.

As program interrupts in Advanced BASIC, through
use of the ON KEY statement. See “ON KEY(n)
Statement™ in the BASIC Reference.

Special Key Combinations

The section that follows describes some key
combinations that are.available in BASIC.

2-15

2-16

ALT Key

You can use the ALT (Alternate) key to type an entire
BASIC keyword with a single keystroke.

To do this, hold down the ALT key and press one of
the alphabetic keys, A-Z. Keywords associated with
the letters are listed below. Letters that do not have
reserved words associated them are noted by “(no
word).”

A AUTO O OPEN

B BSAVE P PRINT

C COLOR Q (no word)
D DELETE R RUN

E ELSE S SCREEN
F FOR T THEN

G GOTO U USING
H HEXS$ V VAL

I INPUT W WIDTH
J (no word) X XOR

K KEY Y (no word)
L LOCATE Z (no word)
M MOTOR

N NEXT

You can also use the ALT key with keys on the numeric
keypad to enter characters not found on the keys. To
do this, hold down the Alt key and type the three-digit
ASCII code for the character. See Appendix D in the
BASIC Reference for a complete list of ASCII codes.

Ctrl Key

The Ctrl key is also used to enter certain codes and
characters not otherwise available from the keyboard.

For example, Ctrl-G is the bell character. When this
character is printed, the speaker beeps. To enter the
bell character, hold down the Ctrl key and press the G
key.

Ctrl-Break

Ctrl-Break interrupts program execution at the next
BASIC instruction and returns to BASIC command
level. It is also used to exit the AUTO line numbering
mode. To use Ctrl-Break, hold down the Ctrl key and
press the Break key.

Ctrl-PrtSc

In BASIC 2.0 and later releases, Ctrl-PrtSc can be used
as an on/off switch to cause any text sent to the screen
to be also sent to the printer. Press and hold the Ctrl
key, press the PrtSc key, and then release both keys to
print display output on the printer. Press and release
both keys again to stop printing display output on the
printer.

Although Ctrl-PrtSc allows the printer to function as a
system log, it slows some operations because the
computer does not continue until the printer stops.

Ctrl-PriSc is disabled when an error condition occurs.

You also use the Ctrl key together with other keys
when you edit programs with the BASIC program
editor. These operations are explained in the section
that follows.

The BASIC Program Editor

Any line of text typed while BASIC is at the command
level is processed by the BASIC Program Editor. The
Program Editor is a *‘screen line editor.” That is, you
can change any line on the screen, one line at a time.
The change will take effect only when you press Enter
on that line.

To become familiar with the capabilities of the Program
Editor, enter a sample program and practice using the
edit keys as described on the pages that follow.

Special Program Editor Keys

You can use keys on the numeric keypad, the
Backspace key, and the Ctrl key to move the cursor
(blinking underscore or box) to a location on the
screen, insert characters, or delete characters.

Key(s) Function

Home Moves the cursor to the upper
left-hand corner of the screen.

Ctrl-Home Clears the screen and positions the
cursor in the upper left-hand corner
of the screen.

T

(Cursor Up) Moves the cursor up one line.

v

(Cursor Down) Moves the cursor down one line.

-

(Cursor Left)

—_>

(Cursor Right)

Ctrl -
(Next Word)

Moves the cursor left one position. If
the cursor advances beyond the left
edge of the screen, it moves to the
right side of the screen on the
preceding line.

Moves the cursor right one position.
If the cursor advances beyond the
right edge of the screen, it moves to
the left side of the screen on the next
line down.

Moves the cursor right to the next
word. A word is any alphanumeric
character or group of characters
preceded by a blank or special
character.

For example, in the following line:
LINE (L1,LOW2)-(MAX,48) ,3 , BF

the cursor is in the middle of the
word LOW2. If you press Next
Word (Ctrl-Cursor Right), the
cursor moves to the beginning of the
next word, which is MAX:

LINE (L1,L0W2)-(MAX,48) ,3 , BF
If you press Next Word again, the
cursor moves to the next word,
which is the number 48:

LINE (L1,LOW2)-(MAX,48) ,3 , BF

2-20

Ctrl
(Previous Word)

End

Ctrl-End

Moves the cursor left to the
beginning of the previous word. The
previous word is the letter or number
to the left of the cursor that is
preceded by a blank or special
character.

For example, suppose you have:

LINE (L1,LOW2)-(MAX,48) ,3 , BF
If you press Previous Word
(Ctrl-Cursor Left), the cursor moves
to the beginning of the word BF:

LINE (L1,L0W2)-(MAX,48) ,3 , BF

When you press Previous Word
again, the cursor moves to the
number 3:

LINE (L1,LOW2)-(MAX.,48) .3 , BF

Moves the cursor to the end of the
logical line.

Erases to the the end of a logical
line.

Ins

Del

Sets insert mode on or off. In insert
mode, the cursor covers the lower
half of a character position.

When insert mode is on, characters
above and following the cursor move
to the right as characters are
inserted. Line wrapping occurs; that
is, as characters advance off the right
side of the screen they return on the
left of the next line.

When insert mode is off, any
characters typed replace the existing
characters on the line.

Note: You can also turn off
insert mode by pressing any of
the cursor movement keys or the
Enter key.

Deletes the character at the current
cursor position. All characters to the
right of the deleted character move
one position left to fill in the empty
space. Line wrapping occurs; that is,
if a logical line (to the next Enter)
extends beyond one physical line,
characters on subsequent lines move
left one position to fill in the
previous space, and the character in
the first column of each subsequent
line moves up to the end of the
preceding line.

2-21

2-22

-«

(Backspace)

Esc

Ctrl-Break

Deletes the last character typed.
That is, it deletes the character to the
left of the cursor. All characters to
the right of the deleted character
move left one position to fill in the
space. Subsequent characters and
lines within the current logical line
move up as with the Del key.

When pressed anywhere in a line,
erases the entire logical line from the
screen. The line is not passed to
BASIC for processing. However, if
it is a program line (begins with a
line number), it is not erased from
the program in memory.

Returns to command level wirhour

saving any changes that were made
to the line being edited. It does not

erase the line from the screen as Esc
does.

(Tab) Moves the cursor to the next tab
stop. Tab stops occur every 8
character positions (1, 9, 17, and so
on).

When insert mode is off, pressing the
Tab key moves the cursor over
characters until it reaches the next
tab stop.

For example, suppose you have the
following line:

10 REM this is a remark

If you press the Tab key, the cursor
will move to the ninth position as
shown:

10 REM this is a remark

When insert mode is on, pressing
the Tab key inserts blanks from the
current cursor position to the next
tab stop. Line wrapping occurs as
explained under Ins. For example,
suppose you have this line:

10 REM this is a remark
If you press the Ins key and then
the Tab key, blanks are inserted up

to position 17:

13 REM th is is a remark

2-23

Correcting the Current Line

2-24

Since any line of text typed while BASIC is at the
command level is processed by the Program Editor, you
can use any of the keys described in the previous
section to make corrections on the current line.
(BASIC is at the command level after the prompt Ok
and until you type a RUN command.)

You can extend a logical line over more than one
physical screen line by simply typing beyond the edge
of the screen. The cursor will wrap to the next screen
line.

You can also use a line feed (Ctrl-Enter) to print
subsequent text on the next screen line. The logical line
is not processed until you press Enter.

The line feed actually fills the remainder of the physical
screen line with blank characters. These blanks are
included in the 255 characters allowed for a BASIC
line. (A line feed character is not added to the text and
is not counted in the line.)

When the Enter key is [inally pressed, the entire logical
line is passed to BASIC for processing.

Changing Characters: If you are typing a line and
discover you typed something incorrectly, you can
correct it. Use the Cursor Left or other cursor
movement keys (explained in the previous section) to
move the cursor to the position where the mistake
occurred, and type the correct letters on top of the
wrong ones. Then, move the cursor back to the end of
the line using the Cursor Right or End keys, and
continue typing.

Erasing Characters: If you notice you've typed an
extra character in the line you're typing, you can erase
(delete) it using the Del key. Use the Cursor Left or
other cursor movement keys to move the cursor to the
character you want to erase. Press the Del key, and the

unwanted character is deleted. Then use the Cursor
Right or End keys to move the cursor back to the end
of the line, and continue typing.

Adding Characters: If you see that you've omitted
characters in the line you're typing, move the cursor to
the position where you want to put the new characters.
Press the Ins key to get into Insert Mode. Type the
characters you want to add. The characters you type
will be inserted at the cursor. The characters above and
following it will be pushed to the right. As before,
when you’re ready to continue typing at the end of the
line, use the Cursor Right or End keys to move the
cursor there and just continue typing. Insert Mode will
automatically be turned off when you use either of
these keys.

Erasing Part of a Line: To erase to the end of a line
on the screen, press Ctrl-End.

For example, suppose you have typed the following:
10 REM *** this is a remark

You decide you would like to change the line. You
have the cursor positioned under the t in the first word
this, so all you have to do to erase the rest of the line is
press Ctrl-End:

1@ REM ™77

Canceling a Line: To cancel a line that is being typed,
press the Esc key anywhere in the line. You do not
have to press Enter. The entire line beginning with the
previous Enter will be erased.

For example, suppose you have this line:
THIS IS A LINE THAT HAS NO MEANING_

Even though the cursor is at the end of the line, the
entire line is erased when you press Esc:

2-25

Entering or Changing a BASIC Program

A BASIC program line always begins with a line
number, ends with an Enter, and can contain a
maximum of 255 characters, including the Enter. If a
line contains more than 255 characters, the extra
characters are truncated (removed) when Enter is
pressed. Even though the extra characters still appear
on the screen, they are not processed by BASIC.

You can enter BASIC keywords and variable names in
any combination of uppercase (capital) and lowercase
(small) letters. The Program Editor will convert
everything to uppercase except remarks, DATA
statements, and strings enclosed in quotation marks.

BASIC will sometimes change in other ways something
you have entered. For example, suppose you use the
question mark (?) instead of the word PRINT in a
program line. (The ? is a shorthand way of entering
PRINT.) When you later list the line, the ? will be
changed to PRINT with a space after it. If this
expansion causes the line to exceed the maximum of
255 characters, the excess characters will be cut off.

Editing a Program Line on the Screen

2-26

You can edit any program line on the screen. First,
move the cursor to the place where the change is to be
made. Then you can use any or all of the techniques
described in this section to change, delete, or add
characters to the line. The changes will not become
part of your program until you press Enter.

If you want to modify program lines that are not
displayed at the moment, you can use the EDIT or
LIST command to display them. See “EDIT
Command™ and “LIST Command” in the BASIC
Reference.

You can duplicate a line in a program by moving the
cursor Lo the line to be duplicated and then changing

the line number to the new line number by typing over
the numbers. When you press Enter, both the old line
and the new line are in the program.

Note that when you are making corrections to a line
you have already entered, you do not have to move the
cursor to the end of that logical line before pressing
Enter. The Program Editor knows where each logical
line ends and it processes the whole line even if the
Enter is pressed at the beginning of the line.

Note: Use of the AUTO command can be very
helpful when you are entering your program.
However, you should exit AUTO mode by pressing
Ctrl-Break before changing any lines other than the
current one.

Remember, changes made using these techniques
change only the program in memory. To permanently
save the program with the new changes, use the SAVE
command before entering a NEW command or leaving
BASIC. See “SAVE Command” in the BASIC
Reference.

Adding a New Line to a Program: Type a valid line
number (@ through 65529) that has not already been
used in the program, then at least one nonblank
character, then Enter. The line is saved as part of the
BASIC program in storage.

If a line already exists that has the same line number as
the line you have just entered, the old line is erased and
replaced with the new one.

If you try to add a line to a program when there is no
more room in storage, an Out of memory error occurs
and the line is not added.

Replacing a Program Line: You can replace an
existing line by typing the number of the line already in
the program, the new text as you want it to appear, and
then Enter.

2-27

Deleting a Program Line: To delete an existing
program line, type only the number of the line and then
press Enter. For example, if you enter:

10
line 10 is deleted from the program.

To delete a group of program lines, use the DELETE
command. See “DELETE Command” in the BASIC
Reference.

Do not use the Esc key to delete program lines. Esc
causes a line Lo be erased only from the screen, not
from the BASIC program.

Note: If you try to delete a nonexistent line, an
Undefined line number error occurs.

Deleting an Entire Program: To delete the entire
program that currently resides in memory, enter the
NEW command. See “NEW Command” in the BASIC
Reference.

Syntax Errors

2-28

When a syntax error is encountered during the running
of a program, BASIC displays a Syntax error message
along with the number of the line that contains the
error. Then the line itself is displayed so you can
correct it. For example:

16 A = 2312

RUN

Syntax error in 10
10 A = 2512

Notice that BASIC has positioned the cursor at the
beginning of the line, under the digit 1. To correct the
error, move the cursor right to the dollar sign ($),
change it to a plus sign (+), and then press Enter. The
corrected line is now stored back in the program.

When you edit a line and store it back in the program
while the program is interrupted (as in this example),
certain things happen, primarily:

« All variables and arrays are lost. That is, they are
reset to zero or null.

« Any files that were open are closed.

« You cannot use CONT to continue the program.

Running a BASIC Program

Two steps are involved in using a BASIC program that
you have on a diskette.

The first step is getting a copy of the program
transferred from the diskette into the computer’s
memory. This is called loading the program and is done
with the LOAD command.

The second step is the actual performance of the
program’s instructions. This is called running the
program and is done with the RUN command. RUN
filespec loads and runs the program specified.

Let’s go through the sequence, using the SAMPLES
program on the DOS Supplemental Programs diskette.

SAMPLES Program
1. Make sure DOS is ready and A> is displayed.

2. Insert the DOS diskette into drive A if it is not
already there.

3. Type:

basi

2-29

and press Enter.

This loads Disk BASIC into the computer’s
memory. You'll see the BASIC prompt (Ok), the
IBM BASIC copyright, and, across the bottom of
the screen, the ten BASIC function keys.

4. Remove the DOS diskette and insert the DOS
Supplemental Programs diskette in drive A.

5. Type:
run "samples
and press Enter.

6. When the SAMPLES title screen is displayed, press
the space bar. You will see the menu screen.

7. Select the item you want from the menu screen.
Note the remarks next to the menu items. They tell
you what you need to run the program you selected:
whether you need to use Advanced BASIC
(BASICA), whether you need a Color/Graphics
Monitor, and the amount of memory you need in
your system to run these sample programs.

Notice that Advanced BASIC is required for some of
the sample programs, but you can use Advanced
BASIC to run any of them.

Try program H, COLORBAR. Type:
h

You do not have to press Enter. If you have a
monochrome monitor, you will see two rows of bars in
one color. If you have a color monitor, you will see
bars of various colors. Adjust the monitor controls as
necessary until you achieve a pleasing and appropriate
display.

2-30

After you have entered your program selection, follow
the instructions on the screen. Press Esc to stop a
program and return to the menu.

When you have tried the programs you want to see and
have returned to the menu, press Esc again. You will
see the BASIC prompt, Ok.

COMM Program

A sample telecommunications program is included on
the DOS Supplemental Programs diskette. This
program lets you establish an asynchronous
communications link with another IBM Personal
Computer, an IBM Series/ 1 computer, or two
communications network services.

To use the COMM program, you need the optional
Asynchronous Communications Adapter, equipment,
and subscriptions. If you need help, consult your place
of purchase.

Note: The COMM program can serve as a model
for writing your own telecommunications program.

If you have an Asynchronous Communications
Adapter, you can look at the COMM program menu,
even if you don’t plan to communicate with another
computer.

2-31

Running a BASIC Program From Another
Diskette

2-32

You can run a BASIC program from any diskette by
loading BASIC first and then specifying the drive
and/or path where your program is located.

With One Diskette Drive

With a one-drive system you do not need to change or

add a drive specification to filespec. Simply insert the

diskette into the drive after you have invoked BASIC.

1. Load BASIC.

2. Remove the DOS diskette from drive A and insert
into drive A the diskette that contains your
program.

3. Load and run your program.

With More Than One Diskette Drive

With a system with more than one drive you need to
specify the location of your program.

1. Load BASIC.

2. Load and run your program from the drive or path
you specified.

Chapter 3. General Information about
Programming in BASIC

Contents

Line Formatooeveereerncninsasnsons 3-3

Character Set . ovics vasessusammmomaesssrse 3-4

Reserved Wordsoiiiiiiiinnenneeans 3-6

Constants < vvvewreoearoonomnmspaiissiass 3-8
Numeric PreciSion. « -« «. : cwwe v sssovns e 3-12

How BASIC Converts Numbers from One

Precisionto Anothercccciviieennnns 3-14
Variables v voosnenomeamooeesssessssises 3-17
How to Name a Variable 3-17
How to Declare Variable Types 3-18
AIFAVE v vnsvemas b SEHEE 65883050 e 3-19
Techniques for Formatting Your Output 3-22
Numeric Expressions and Operators 3-23
Arithmetic Operatorseome.oss 3-24
Relational Operaftors . ..s: e awimes avssus 3-25
Logical Operatorsccoooesn. 3-27
Numeric Functionst 3-31
Order of Executionueenons 3-32
String Expressions and Operators 3-34
Concatenation. ... sssspmesiaaessvsyny 3-34
String Functions cccvcevnean 3-34
Input and Qutputcovivivnrireeenns 3-35
o T Pt e A s Y T e ot) e DN Y 3-35
File NURDET i cnccvmmmmunvassasssmmnn 3-35

3-1

| 2E 1051 T2 o1 (R 3-36

Device Name 3-38
Naming Files 3-39
Types of Directories 3-42
Current Directory 3-42
Tree-Structured Directories 3-43
Device Support 3-44
Screen Displays 3-46
Display Adapters 3-46
Text Mode o viiiiiveenn cmmmnsnnns 3-47
Graphics Modes 3-49

3-2

Line Format

Program lines in a BASIC program have the following
format:

nnnnn BASIC statement[:BASIC statement...]['comment]

and they end with Enter.

Line Numbers: “nnnnn” is a line number one to five
digits long. Line numbers show the order in which the
program lines are stored and serve as reference points
for branching and editing. Line numbers must be in the
range f to 65529. A period (.) can be used in LIST,
AUTO, DELETE, and EDIT commands to refer to the
current line.

BASIC Statements: A BASIC statement is either
executable or nonexecutable. Executable statements are
instructions that tell BASIC what to do next while
running a program. For example, PRINT X is an
executable statement. Nonexecutable statements, such
as DATA or REM, contain information only and do not
cause any program action when BASIC sees them. All
the BASIC statements are explained in detail in the
BASIC Reference.

You can, if you wish, have more than one BASIC
statement on a line, but each statement must be
separated from the one before it by a colon. The total
number of characters cannot exceed 255, including the
Enter. For example:

10 FOR I=1 TO 5: PRINT I: NEXT
RUN

(S plE R FS R I

3-3

Comments: Comments can be included at the end of a
line. The * (single quote) separates the comment from
the rest of the line.

Character Set

The BASIC character set consists of alphabetic

characters (A-Z), numeric characters (0-9), and special
characters.

3-4

The following special characters have specific meanings

in BASIC:

Character

+

P N

Name

blank

equal sign or assignment symbol

plus sign or concatenation symbol

minus sign

asterisk or multiplication symbol

slash or division symbol

backslash; integer division symbol or path

delimiter

caret or exponentiation symbol

left parenthesis

right parenthesis

percent sign or integer type-declaration
character

number (or pound) sign, or double-
precision type declaration character

dollar sign or string type-declaration
character

exclamation point or single-precision
type-declaration character

ampersand

comma

period or decimal point

single quotation mark (apostrophe), or
remark delimiter

semicolon

colon or statement separator

question mark (PRINT abbreviation)

less than

greater than

double quotation mark or string
delimiter

underline

Many characters can be printed or displayed even
though they have no particular meaning to BASIC. See
Appendix D, “ASCII Character Codes,” in the BASIC
Reference for a complete list of these characters.

Reserved Words

Certain words and letter combinations have special
meaning to BASIC. They are called reserved words.
Reserved words include all BASIC commands,
statements, function names, and operator names.
Reserved words cannot be used as variable names.

Reserved words must be separated from data or other
parts of a BASIC statement by blanks or special
characters as allowed by the syntax.

The following are reserved words in BASIC.

3-6

ABS DATES$
AND DEF

ASC DEFDBL
ATN DEFINT
AUTO DEFSNG
BEEP DEFSTR
BLOAD DELETE
BSAVE DIM
CALL DRAW
CDBL EDIT
CHAIN ELSE
CHDIR END
CHRS ENVIRON
CINT ENVIRONS
CIRCLE EOF
CLEAR EQV
CLOSE ERASE
CLS ERDEV
COLOR ERDEV#$
COM ERL
COMMON ERR
CONT ERROR
COS EXP
CSNG FIELD
CSRLIN FILES
CVD FIX

CVI FNxxxxxxxx
CVS

DATA

FOR
FRE
GET
GOSUB
GOTO
HEX$
IF

IMP
INKEY$
INP
INPUT
INPUT#H
INPUT$
INSTR
INT
INTERS
I0CTL
IOCTL$
KEY
KILL
LEFTS$
LEN
LET
LINE
LIST
LLIST
LOAD
LOC
LOCATE
LOF
LOG
LPOS
LPRINT
LSET
MERGE
MID$
MKDIR
MKDS$
MKIS$
MKSS$
MOD
MOTOR
NAME

NEW
NEXT
NOT
OCTS$
OFF

ON
OPEN
OPTION
OR

ouT
PAINT
PEEK
PEN
PLAY
PMAP
POINT
POKE
POS
PRESET
PRINT
PRINT#
PSET
PUT
RANDOMIZE
READ
REM
RENUM
RESET
RESTORE
RESUME
RETURN
RIGHT$
RMDIR
RND
RSET
RUN
SAVE
SCREEN
SGN
SHELL
SIN
SOUND
SPACES$

SPC(TRON
SQR USING
STEP USR
STICK VAL
STOP VARPTR
STRS VARPTRS
STRIG VIEW
STRING#S WAIT
SWAP WEND
SYSTEM WHILE
TAB(WIDTH
TAN WINDOW
THEN WRITE
TIMES$ WRITE#
TIMER XOR
TO
TROFF

Constants

Constants are values that you supply when you write a
BASIC program and that do not change during program
execution. There are two types of constants: string
(character) constants and numeric constants.

A string constant is a sequence of up to 255 characters
enclosed in double quotation marks. The characters can
be letters, numbers, or symbols. Examples of string
constants:

"HELLO"
"425,000.00"
“Number of Employees”

There are a few cases where BASIC knows that a
particular thing must be a string constant, and the
guotation marks are not required. These cases are
noted where appropriate in this book. Also, if you start
a string with a quotation mark, but forget to add the
end quotation mark, BASIC assumes that a quotation

3-8

mark is at the end of the line. However, this produces
correct results only when the string is the last thing on

the line.

Numeric constants are positive or negative numbers. A
plus sign (+) is optional on a positive number.
Negative numbers must be signed. Numeric constants
in BASIC cannot contain commas. There are five ways
to indicate numeric constants:

Integer

Fixed point

Floating point

Whole numbers between -32768 and
+32767, inclusive. Integer constants
do not have decimal points.

Positive or negative real numbers;
that is, numbers that contain decimal
points.

Positive or negative numbers
represented in exponential form
(similar to scientific notation). In
single-precision calculation, a
floating point constant consists of an
optionally signed integer or fixed
point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent). Double-precision
floating point constants use the letter
D instead of E. The E (or D) means
“times ten to the power of.”

You can represent any number from
2.9E-39 to 1.7E+38 (positive or
negative) as a floating point
constant.

For more information, see the next
section, “Numeric Precision.”

3-9

For example:
23E=2

Here, 23 is the mantissa, and -2 is
the exponent. This number could be
read as “23 times 10 to the negative
two power.” You could write it as
0.23 in regular fixed-point notation.

More examples:
235.988E-7

This is a single-precision number
equivalent to .0PNHN235988.

235906

This is a double-precision number
equivalent to 235900000 0.

Remember, when you read floating
point notation: E indicates
single-precision calculation and D
indicates double-precision
calculation.

Hex

QOctal

Hexadecimal integer numbers up to
four digits, with a prefix of &H.
Hexadecimal digits are the numbers
f through 9, A, B, C, D, E, and F.
Examples:

&H76
&H32F

Octal integer numbers up to six
digits, with the prefix &O or just &.
Octal digits are §) through 7.
Examples:

&0347
&1234

3-11

Numeric Precision

Numbers can be stored internally as integer,
single-precision, or double-precision numbers.
Constants entered in integer, hex, or octal format are
stored in two bytes of memory and are interpreted as
integers (whole numbers). With double-precision
calculation, the numbers are stored with 17 digits of
precision and printed with up to 16 digits. With
single-precision calculation, seven digits are stored and
up to seven digits are printed, although only six digits
may be accurate. Seven digits are printed in single
precision because any intermediary processing uses all
seven digits. To ensure the accuracy of final results,
enter all seven digits before the final results when you
do interactive processing.

A single-precision constant is any numeric constant
written with any one of the following:

« seven or fewer digits
= exponential form using E
« trailing exclamation point (!)

A double-precision constant is any numeric constant
written with any one of the following:

« eight or more digits
« exponential form using D

« trailing number sign (&)

The following table summarizes the precision and range
of integers, single-precision numbers, and
double-precision numbers:

TYPE RANGE ACCURACY
Integer -32768 to 32767 Perfect
Single-precision 19E-38 to 6 decimal
floating point 1PE+38 digits
Double-precision 1AD-38 to 16 decimal
floating point 10D+38 digits

Examples of single- and double-precision constants:

Single-Precision Double-Precision
46.8 345692811
-1.09E-p6 -1.09432D-p6
3489.0 3489.0%

22.5! 7654321.1234

3-13

How BASIC Converts Numbers from
One Precision to Another

When necessary, BASIC converts a number from one
precision to another according to the following rules:

s

If a numeric value of one precision is assigned to a
numeric variable of a different precision, the
number is stored as the precision declared in the
target variable name.

Example:

10 A% = 23.42
20 PRINT A%
RUN

23

Rounding up, as opposed to truncation, occurs when
assigning any higher precision value to a lower
precision variable (for example, changing from
double- to single-precision values).

Example:

10 C = 55.8834567%
20 PRINT C

RUN

5.88346

(8]
5ol

This affects not only assignment statements (e.g.,
[9% =2.5 results in [%=3), but also function and
statement evaluations. For instance, TAB(4.5) goes
to the fifth position; A(1.5) is the same as A(2);
and X=11.5 MOD 4 results in a value of § for X.

3

If you convert from a lower precision to a higher
precision number, the resulting higher precision
number cannot be any more accurate than the lower
precision number. For example, if you assign a
single-precision value (A) to a double-precision
variable (B#), only the first six digits of B# will be
accurate because only six digits of accuracy were
supplied with A. The error can be bounded using
the following formula:

ABS(B#-A) < 6.3E-8 * A

That is, the absolute value of the difference
between the printed double-precision number and
the original single-precision value is less than 6.3E-8
times the original single-precision value.

Example:

10 A = 2.04

20 B# = A

30 PRINT A;B#

RUN

2.04 2.039999961853027

When an expression is evaluated, all the operands in
an arithmetic or relational operation are converted
to the same degree of precision, namely the most
precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

Examples:

10 D# = 6#/7

23 PRINT D#

RUN
.B571428571428571

3-15

3-16

wn

The arithmetic is performed in double precision
and the result is returned in D# as a
double-precision value.

10D = 65/7
20 PRINT D
RUN
.8571429

The arithmetic is performed in double precision
and the result is returned to D (single-precision
variable), rounded, and printed as a single-precision
value.

Logical operators (see “Logical Operators™ in this
chapter) convert their operands to integers and
return an integer result. Operands must be in the
range -32768 to 32767 or an Overflow error occurs.

Variables

Variables are names used to represent values in a
BASIC program. As with constants, there are two
types of variables: numeric and string. A numeric
variable always has a number value. A string variable
can only have a character string value. A string
variable can have up to 255 characters.

You can give a variable an unchanging value (such as
salary equals a certain amount) or you can set its value
to be the result of calculations or data input statements
in the program (such as salary equals 1% of sales). In
any case, the variable type (string or numeric) must
match the type of data assigned to it.

If you use a numeric variable before you assign a value
to it, its value is assumed to be zero. String variables
are initially assumed to be null; that is, they have no
characters in them and have a length of zero.

How to Name a Variable

BASIC allows a variable name to be up to 40
characters in length.

The characters can be letters, numbers, and decimal
points. The first character must be a letter. Special
characters that identify the type of variable are also
allowed as the last character of the name. For more
information about types, see the next section, “How to
Declare Variable Types.”

A variable name cannot be a reserved word, but it can
contain imbedded reserved words. (See “Reserved
Words,” earlier in this chapter, for a complete list of
reserved words.) For example:

13 EXP = 5

is invalid. because EXP is a reserved word. However,

3-17

10 EXPONENT = 5
is okay, because EXP is imbedded in the variable name.
Note: A variable beginning with FN is assumed to

be a call to 2 user-defined function. See “DEF FN
Statement™ in the BASIC Reference.

How to Declare Variable Types

3-18

A variable name determines its type (string or numeric,
and if numeric, its precision).

String variable names are written with a dollar sign ($)
as the last character. For example;

A$ = "SALES REPORT"

The dollar sign is a variable type-declaration character.
It *“declares™ that the variable will represent a string.

Numeric variable names can declare integer, single-, or
double-precision values. Although computations with
single-precision variables are less accurate, there are
advantages to using them:

» They require less storage.

» They can be calculated faster.

The type-declaration characters for numeric variables
and the number of bytes required to store each type of
value are:

% Integer variable (2 bytes)

! Single-precision variable (4 bytes)

Double-precision variable (8 bytes)

Note: If the type-declaration character is not
specified, the default is single precision.

Arrays

Examples of variable names with type-declaration
characters are:

PI# declares a double-precision value
MINIMUM! declares a single-precision value
LIMIT% declares an integer value

N$ declares a string value

ABC defaults to a single-precision value

Variable types can also be declared in another way.
The BASIC statements DEFINT, DEFSNG, DEFDBL,
and DEFSTR can be included in a program to declare
the types for certain variable names. These statements
are described under “DEFtype Statements™ in the
BASIC Reference. All the examples in this book assume
that no DEFtype statements were used (unless they are
explicitly shown in the examples).

An array is a list or table of values that is referred to by
a single name. Each value in the array is called an
element. Elements are string or numeric variables and
can be used in expressions and in BASIC statements.

The subscript (the number in parentheses) indicates the
position of an element in an array. Zero is the first
position unless you explicity change it. See “OPTION
BASE Statement” in the BASIC Reference.

Declaring the name and type of an array and setting the
number of elements and their arrangement within it is
known as defining, or dimensioning, the array. The
maximum number of dimensions for an array is 255.

If you use an array element before you define
(dimension) the array, it is assumed to be dimensioned
with a maximum subscript of 10. That is, only the first
eleven elements (indexed 0 to 10) will be recognized.

3-19

3-20

To define an array, use the DIM statement.

For example:

DIM B$(5)

This statement creates a one-dimensional,
string-variable array named B$ with a maximum of 6

elements. Array B$ can be thought of as a list of
character strings:

BS$(0)
BS(1)
B$(2)
B§(3)
BS(4)
B5(5)

Another example:

DIM A(2,3)

This statement creates a two-dimensional,
numeric-variable array named A. Since the array does
not include a type-declaration character, the array by
default consists of single-precision values.

Array A can be thought of as a table of rows and
columns:

A(0,0) A(9,1) A(D,2) A(90,3)

A(1,0) A(l,1) A(1,2) A(1,3)

A(2,90) A(2,1) A(2,2) A(2,3)

The element in the second row, first column, is called
A(1,0).

Here is a sample program:

10
20
30
40
50
60
70
80
RU

o e

o a e

Saaw

(eNec i~
=

In

DIM YEARS(3,4)
YEARS(2,3)=84

FOR ROW=@ TO 3

FOR COLUMN=0 TO 4

PRINT YEARS(ROW,COLUMN);
NEXT COLUMN

PRINT

NEXT ROW
N

e e

this program, line 10 dimensions an array with 2)

clements (4 rows and 5 columns). Line 2 assigns the
array element at position 2,3 the value of 84. The

ne

sted loops in lines 30-80 print the array as a 4 by 5

matrix.

Note: A scalar variable can have the same name as
an array variable because A$ is different from any
element in array A% (n,...).

3-21

Techniques for Formatting Your Output

BASIC has built-in statements and functions that you
can use in your programs to display numbers in the
desired format and with the desired accuracy.

» Use DEFDBL to define your constants and
variables as double-precision numbers to format
your output. For example:

10 WIDTH 80

20 DEFDBL A

30 A=70#

4G PRINT A/100%#,

50 A=A+l

60 IF A<100# GOTO 40

RUN
7 oYL T2 73 .74
Sl .76 AT .78 79
-8 .81 .82 .83 .84
.85 .86 .87 .88 .89
.9 91 98 .93 .94

95 .96 97 .98 .99

+ Todisplay program results in decimal notation, use
the PRINT USING and LPRINT USING
statements. These statements let you choose the
format in which the results will be printed or
displayed.

10 FOR I=4 to 5 STEP .1
20 PRINT USING "#.# ";I;
30 NEXT

RUN

4.04.14.24.34.44.,54.64.74.84.95.0

3-22

Notes:

1. Avoid using both single- and double-precision
numbers in the same formula because it reduces
accuracy.

2. Use double-precision transcendental functions for
greater accuracy.

Numeric Expressions and Operators

A numeric expression can be simply a numeric constant
or variable. It can also be an operator, combining
constants and variables to produce a single numeric
value.

Numeric operators perform mathematical or logical
operations, most often on numeric values, but
sometimes on string values. They are called numeric
operators because they produce a value that is a
number. BASIC numeric operators can be divided into
the following categories:

» Arithmetic
s Relational
« Logical

« Functions

3-23

Arithmetic Operators

3-24

The arithmetic operators perform the usual arithmetic
operations in the standard mathematical order of
preference; that is, when an expression contains more
than one operation, they will be carried out in the
following order:

Operator Operation Sample Expression
A Exponentiation XAY
- Negation -X
o Multiplication, X*Y
Floating Point X/Y
Division
\ Integer Division X\Y
MOD Modulo Arithmetic X MOD Y
+, - Addition, X+Y
Subtraction X-Y

Although most of these operations probably look
familiar to you, two of them - integer division and
modulo arithmetic - may need some explanation.

Integer Division: Integer division is denoted by a
backslash (\). The operands are rounded to integers
(in the range -32768 through 32767) before the
division is performed: the quotient is truncated to an
integer.

For example:

10 A = 10\4

20 B = 25.68\6.99
30 PRINT A;B

RUN

Modulo Arithmetic: Modulo arithmetic is denoted by
the operator MOD. It gives the integer value that is the
remainder of an integer division.

For example:

10 A =7 MOD 4
20 PRINT A
RUN

This result occurs because 7/4 is 1, with remainder 3.

PRINT 25.68 MOD 6.99

Ly)

The result is 5 because 26/7 is 3, with the remainder 5.
(Remember, BASIC rounds when converting to
integers.)

Relational Operators

Relational operators compare two values. The values
can both be either numeric or string. The result of the
comparison is either “true” (-1) or “false” (). This
result is usually used to make a decision regarding
program flow. See “IF Statement™ in the BASIC
Reference.

3-25

Operator Relation Tested Sample Expression

= Equality X=Y
<> or >< Inequality X<>Y
X><Y

< Less than X<y

= Grealer than X>Y
<= or =< Less than or X<=Y
equal to X=<Y
>=or => Greater than X>=Y
or equal to X=>Y

(The equal sign is also used to assign a value to a
variable. See “LET Statement” in the BASIC
Reference.)

Numeric Comparisons: When arithmetic and
relational operators are combined in one expression, the
arithmetic is always performed first. For example, the
expression:

K+Y < (T-1)/Z

is true (-1) if the value of X plus Y is less than the
value of T-1 divided by Z.

3-26

String Comparisons: String comparisons can be
thought of as “alphabetical.” That is, a string is ““less
than” another if the first letter of it comes before the
other one alphabetically. Lowercase letters are
“greater than” their uppercase counterparts. Numbers
are “‘less than” letters.

The way two strings are actually compared is by taking
(one character at a time from each string and comparing
the ASCII codes. See Appendix D, “ASCII Character
Codes.” in the BASIC Reference. 1f all the ASCII codes
are the same, the strings are equal. Otherwise, as soon
as the ASCII codes differ, the string with the lower
code number is less than the string with the higher code
number. If, during string comparison, the end of one
string is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant. For
example, all the following relational expressions are
true (that is, the result of the relational operation is -1):

"AA” = uABn
"FILENAME" = "FILENAME"
IIX&II > !lx#ll
"kg” = llKGll

"RICH" < "RICHB"
B$ < "718" (where B$ = "12543")

All string constants used in comparison expressions
must be enclosed in quotation marks.

Logical Operators

Logical operators perform logical, or boolean,
operations on numeric values. Just as the relational
operators are usually used to make decisions regarding
program flow, logical operators are usually used to
connect two or more relations and return a true or false
value to be used in a decision. See “IF Statement” in
the BASIC Reference.

A logical operator takes a combination of true-false

values and returns a true or false result. An operand of
a logical operator is considered to be true if it is not

3-27

3-28

equal to zero (like the -1 returned by a relational
operator); or false if it is equal to zero. The number is
calculated by performing the operation bit by bit.

The logical operators are: NOT (logical complement),
AND (conjunction), OR (disjunction), XOR (exclusive
or), IMP (implication), and EQV (equivalence). Each
operator returns results as indicated in the following
table. (T indicates a true, or nonzero value. F indicates
a false, or zero value.) The operators are listed in order
of precedence.

NOT

X NOTX

OR

ORY

p

P

SR SR P

XOR

=B

XXORY

P

S e

EQV

3-29

3-30

Some examples of ways to use logical operators in
decisions:

IF HE>60 AND SHE<20 THEN 1000

Here, the result is true if the value of the variable HE is
more than 60 and the value of SHE is less than 20.

50 IF NOT (P=-1) THEN 100

Here, the program branches to line 100 if P is not equal
to -1. Note that NOT (P=-1) does not produce the
same result as NOT P. See the next section, “How
Logical Operators Work,” for an explanation.

100 FLAGY = NOT FLAGY

This example switches a value back and forth from true
to false.

How Logical Operators Work: Operands are
converted to integers in the range -32768 to +32767.
(If the operands are not in this range, an Overflow error
results.) If the operand is negative, the twos
complement form is used. This turns each operand into
a sequence of 16 bits. The operation is performed on
these sequences. That is, each bit of the result is
determined by the corresponding bits in the two
operands, according to the tables for the operator listed
previously. A 1 bit is considered “true” and a 0 bit is
“false”.

Thus, you can use logical operators to test for a
particular bit pattern. For instance, the AND operator
may be used to “mask” all but one of the bits of a
status byte at a machine 1/0 port.

The following examples show how the logical operators
work.

Here, A is set to 16. Since 63 is binary 111111 and 16
is binary 10000, 63 AND 16 equals H19AOP in binary,
which is equal to 16.

B = -1 AND 8

Bissetto 8. Since-1isbinary 11111111 11111111
and 8 is binary 1000, -1 AND 8 equals
binary 000000000 0HN10HH, or 8.

C =4 0R 2

Here, C equals 6. Since 4 is binary 100 and 2 is binary
$#10, 4 OR 2 is binary 110, which is equal to 6.

2

TWOSCOMP = (NOT X) + 1

This example shows how to form the twos complement
of a number. X is 2, which is 10 binary. NOT X is then
binary 11111111 11111101, which is -3 in decimal; -3
plus 1 is -2, the complement of 2. That is, the twos
complement of any integer is the bit complement plus
one.

Note that if both operands are equal to eitherf or -1, a
logical operator returns either f or -1.

Numeric Functions

A function is used like a variable in an expression to
call a predetermined operation that is to be performed
on one or more operands. BASIC has some built-in
numeric functions that reside in the system, such as
SQR (square root) and SIN (sine).

You can also define your own numeric functions using

the DEF FN statement. See “DEF FN Statement” in
the BASIC Reference.

3-31

Order of Execution

3-32

In the previous sections, the categories of numeric
operations have been discussed in their order of
precedence, and the precedence of each operation
within a category was indicated in the discussion of the
category. In summary:

1. Function calls are evaluated first.

2. Arithmetic operations are performed next, in this
order:

a A

b. unary -
G ™,

d. \

e. MOD
f. +, -

3. Relational operations are done next.
4. Logical operations are done last, in this order:

NOT
AND
OR
XOR
EQV
IMP

Toac o

Operations at the same level in the list are performed in
left-to-right order. To change the order in which the
operations are performed, use parentheses. Operations
within parentheses are performed first. Inside
parentheses, the usual order of operations is
maintained.

Here are some sample algebraic expressions and their
BASIC counterparts.

Algebraic Expression BASIC Expression

X42Y X+Y*2
X-Y X-¥i%
Z
XY X*Y/Z
Z
X+Y (X+Y)/2Z
%z
»Y
(X)) (X°2)"Y
z P
<Y X~ (Y"Z)
X(-Y) X*(-Y)

Note: Two consecutive operators must be separated
by parentheses, as shown in the X*(-Y) example.

3-33

String Expressions and Operators

A string expression can be simply a string constant or
variable, or it can combine constants and variables by
using operators to produce a single string value.

String operators are used to arrange character strings in
different ways. The two categories of string operators
are:

« Concalenation
» Function

Note that although you can use the relational operators
=, <>, <, >, <=, and >= to compare two strings,
these are not considered to be *“string operators”
because they produce a numeric result, not a string
result. Read through ““Relational Operators™ earlier in
this chapter for an explanation of how you can compare
strings using relational operators,

Concatenation
Joining two strings together is called concatenation.

Strings are concatenated using the plus symbol (+).
For example:

13 COMPANY$ = "IBM"

20 TYPES " Persopal"

30 FULLNAMES = TYPES + " Computer'
40 PRINT COMPANY$+FULLNAME S

RUN

IBM Personal Computer

String Functions

A string function is like a numeric function except that
it returns a string result. A string function can be used
in an expression to call a predetermined operation that
is to be performed on one or more operands. BASIC
has built-in string functions that reside in the system,

3-34

such as MIDS, which returns a string from the middle
of another string, and CHRS, which returns the
character with the specified ASCII code.

You can also define your own string functions using the
DEF FN statement. See “DEF FN Statement” in the
BASIC Reference.

Input and Output

Files

The remainder ol this chapter contains information on
input and output (1/0) in BASIC. The following Lopics
are discussed: naming and using files and paths; using
I/0 devices;tree structured directories; device support;
and displaying output on the screen in text and graphics
modes.

A file is a collection of information that is kept
somewhere other than in the random access memory of
the IBM Personal Computer; for example, on disk or
cassette. To access the information, you must open the
file with the OPEN statement. Then you can use the
file for input and/or output.

BASIC supports the concept of general device /0
files. This means that any type of input/output can be
treated like 1/0 to a file, whether you are actually using
a cassette or disk file, or you are using your computer
to communicate with another computer.

File Number

BASIC performs I/O operations using a file number.
You assign the number to a file or device when you
open it with the OPEN statement. See “OPEN
Statement” in the BASIC Reference.

3-35

A file number can be any number, variable, or
expression ranging from 1 to the maximum number of
files that can be open at the same time. See /F switch
in “Options in the BASIC Command Line” in Chapter
2

Filename

3-36

The filename must conform to the following rules:
For cassette files:
+ The name cannot be more than eight characters.

» The name cannot contain colons, hexPPs, or hex
FFs (decimal 255s).

For disk files, the name must conform to DOS
conventions:

+ The name can consist of two parts separated by a
period (.):

name.extension

The name can be from one to eight characters. The
extension can be from one to three characters.

If more than three characters are entered for
extension, the extra characters are truncated. If
name is longer than eight characters and extension is
not included, BASIC inserts a period after the
eighth character and uses the extra characters (up to
three) for the extension. If name is longer than eight
characters and an extension is included, an error
oceurs.

Only the following characters are allowed in name
and exrension:

A through Z

f through 9

() it

@ # 5§ % A & !

- R e
Note: Previous releases of BASIC allowed the
characters <, >, and \ to be used within a
filename, but these characters have special meaning
to BASIC 2.9 and later releases and can no longer
be used in filenames.

Some examples of filenames for Disk BASIC and
Advanced BASIC are:

27HAL.DAD
VDL

PROGRAM I.BAS
$$@(!).123

3-37

The following examples show how BASIC shortens
names and extensions when they are too long.

A23456789JKLMN becomes: A2345678.9JK
@HOME.TRUM1/ becomes: @HOME.TRU
SHERRYLYNN.BAS causes an error

Device Name

3-38

The device name consists of up to four alphanumeric
characters followed by a colon (:). It is a2 name
assigned to input/output devices for the IBM Personal
Computer. Device names and what they apply to are as
follows:

KYBD: Keyboard. Input only. All versions of BASIC.

SCRN: Screen. Output only. All versions of BASIC.

LPT1: First printer. Output, all versions; or random
access, Disk BASIC and Advanced BASIC.

LPT2: Second printer. Output or random access.
Disk BASIC and Advanced BASIC.

LPT3: Third printer. Output or random access. Disk
BASIC and Advanced BASIC.

COMMUNICATIONS DEVICES

COMa1: First Asynchronous Communications Adapter.
Input and output. Disk BASIC and Advanced
BASIC.

COM2: Second Asynchronous Communications
Adapter. Input and output. Disk BASIC and
Advanced BASIC.

STORAGE DEVICES

CAS1: Cassette tape player. Input and output. All
versions.

A: First diskette drive. Input and output. Disk
BASIC and Advanced BASIC.

B Second diskette drive. Input and output. Disk
BASIC and Advanced BASIC.

C: First fixed disk drive. Input and output. Disk
BASIC and Advanced BASIC.

D Second fixed disk drive. Input and output. Disk
BASIC and Advanced BASIC.

Note: If you have three diskette drives, the third
diskette drive is C:, the first fixed disk is D:, and the
second fixed disk is E:. Similarly, if you have four
diskette drives, the fourth diskette drive is D:, the
first fixed disk is E:, and the second fixed disk is F:.

Naming Files
The file is described by its file specification, or filespec
for short. The file specification is a string expression in
the form:

[devicellpathlfilename

The device name tells BASIC which 1/0 device is being
used. The path tells BASIC which directory contains
the file. and the filename tells BASIC which file to look

3-39

3-40

for on that particular device. Sometimes you do not
need both device name and path, so specification of
device and path is optional.

All device names end with a colon (:). The colon is
part of the device name and you must include it
whenever that device is specified.

Note: File specifications for communications
devices are different. The filename is replaced with
a list of options specifying such things as line speed.
See “OPEN “COM ... Statement™ in the BASIC
Reference for details.

If you use a string constant for the filespec, you must
enclose it in quotation marks. For example,

LOAD "B:PROG.BAS"

In Disk BASIC and Advanced BASIC 2.0 and later
releases, you can specify a path to a file in your filespec.

A path is a list of directory names separated by
backslashes (\).

You can use paths for the following commands:

BLOAD KILL OPEN
BSAVE LOAD RMDIR
CHAIN MERGE RUN
CHDIR MKDIR SAVE
FILES NAME

Notes:

1. A path cannot contain more than 63 characters.

2. If you specify a device, place the device name
before the path. If you place it anywhere else, you

will see a Bad filename error message.

3. If you use a string constant for the path, you must
enclose it in quotation marks. For example:

“B:ASALESNJUNEANREPORTN"
If you specify a file that is not in the current directory,

you must supply BASIC with a path of directory names
so it can locate the file.

3-41

Types of Directories

3-42

A single directory is created on each disk or diskette
when you use the DOS FORMAT command. That
directory is called the roor directory. The maximum
number of files in a diskette root directory depends on
the media being used. The maximum number of files in
a fixed disk root directory depends on the size of the
DOS partition on the disk.

In addition to containing the names of files, the root
directory also contains the names of other directories
called subdirectories. Unlike the root directory, these
subdirectories are actually files. They can contain any
number of additional files and subdirectories—limited
only by the amount of available space on the disk.

The subdirectory names are in the same format as
filenames. All characters that are valid for filenames
are valid for a directory name. Each directory can
contain file and directory names that also appear in
other directories.

Current Directory

Just as BASIC remembers a default drive, it can also
remember a default directory for each drive on your
system. This is called the current directory and is the
directory that BASIC will search if you enter a filename
without telling BASIC which directory contains the file.
You can change the current directory by issuing the
CHDIR command. See “*CHDIR Command” in the
BASIC Reference.

If a filename is included in a path, it must be separated
from the previous directory name by a backslash. If a
path begins with a backslash, BASIC starts its search
from the root directory; otherwise, the search begins at
the current directory.

Tree-Structured Directories

Previous releases of BASIC used a simple directory
structure for managing files on diskettes. With the
added hardware support for fixed disks, a more
sophisticated method was needed to manage the
thousands of files that a single disk can hold.

BASIC 2.0 and later releases enable you to better
organize and manage your disks by placing groups of
related files in their own directories on the same disk or
diskette. These directories are known as rree-structured
directories. These directories begin with the root
directory and branch into subdirectories.

For example, if a company has two departments, sales
and accounting, that share an IBM Personal Computer,
all the company’s files can be kept on the computer’s
fixed disk. The organization of the files might look like

this:
ROOT
SALES ACCOUNTING
| | ™~
MIKE ALICE SHANNON CHELLE
reports reports

3-43

Device Support

BASIC’s file 1/O system allows the use of user-
installed devices. (See the DOS 3.0 Technical
Reference manual for information on device drivers.)

You could, for instance, write your own device driver to
replace LPT1:. Your program would open this driver as
follows:

OPEN "LPT1" FOR mode AS #filenum

Several rules must be followed when writing a device
driver.

3-44

The name of the installed device cannot end with a
colon. Device names ending with a colon are
reserved for certain predefined devices (KEYBD:,
SCRN:, etc.).

LPT1:, LPT2:, and LPT3: are the only system
device drivers that can be replaced by an installed
device driver having the same name.

The record length is set to 1 unless changed by the
OPEN statement:

OPEN filespec [FOR mode] AS filenum LEN=rec]

When this option is used, BASIC will buffer the
number of characters equal to rec/ before sending
them to the driver.

BASIC sends only a carriage return (&H@D) at the
end of a line. If a line feed (&HPA) is needed, the
driver must provide it.

e Your device driver must be able to return an End of
file condition to BASIC if you want to close a
sequential input file open to a device driver. If
BASIC attempts to read past the end of the device
input stream, the driver should returna AZ
(Control-Z), which is used by BASIC to produce
the Input past end error.

3-45

Screen Displays

3-46

BASIC can display text, special characters, points,
lines, and more complex shapes in one color or in full
color. How much of this you can do depends on which
display adapter you have in your IBM Personal
Computer.

Display Adapters

The IBM Monochrome Display and Parallel Printer
Adapter, and the Color/Graphics Monitor Adapter are
two display adapters available for the IBM Personal
Computer.

With the monochrome adapter, text is displayed in one
color. Text refers to letters, numbers, and all the
special characters. You have some capability to draw
pictures with the special line and block characters. You
can also create blinking, reverse image, invisible,
highlighted, and underscored characters by setting
parameters in the COLOR statement.

The Color/Graphics Monitor Adapter also operates in
text mode, but it allows you to display text in 16
different colors (or one color by setting parameters in
the SCREEN or COLOR statements). You also get
complete graphics capability to draw complex pictures.
This graphics capability makes the screen all points
addressable in medium and high resolution. This is more
versatile than the ability to draw with the special line
and block characters that you have in text mode. In
this book and in the BASIC Reference, the term
graphics refers only to this special capability of the
Color/Graphics Monitor Adapter. The use of the
extended character set with special line and block
characters is not considered graphics.

Character

position 1, 1~

Text Mode

The screen can be pictured like this:

4 L)

-

| &= |
L.— U

—-—— —— - = — =

e = = s = e o

Border
screen

Characters are shown in 25 horizontal lines across the
screen. Line 1 is at the top; line 25 at the bottom.
Each line has 40 character positions (or 8f), depending
on how you set the width). These are numbered 1 to
49 (or 80) from left to right. The position numbers are
used in the LOCATE statement, and are the values
returned by the POS(#) and CSRLIN functions. For
example, the character in the upper left corner of the
screen is on line 1, position 1.

Characters are normally placed on the screen through
the use of the PRINT statement. Characters are
displayed at the position of the cursor from left to right
on each line, from line 1 to line 24. When the cursor
would normally go to line 25 on the screen, lines 1
through 24 are scrolled up one line, so that what was
line 1 disappears from the screen. Line 24 is then
blank, and the cursor remains on line 24 to continue
printing.

Line 25 is usually used for “*soft key™ display (see
“KEY Statement” in the BASIC Reference), but you
can write over this area of the screen if you turn off the
“soft key™ display. The 25th line is never scrolled by
BASIC.

3-47

3-48

Each character on the screen is composed of two parts:
foreground and background. The foreground is the
character itself. The background is the “box’ around
the character. You can set the foreground and the
background color for each character by using the
COLOR statement. You can also make characters
blink.

You can use a total of 16 different colors if you have
the Color/Graphics Monitor Adapter:

f Black 8 Gray

1 Blue 9 Light Blue

2 Green 1§ Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 High-intensity White

Colors may vary depending on your display device.

Most television sets or monitors have an area of
overscan that is outside the area used for characters.
This overscan area is known as the border screen. You
can use the COLOR statement to set the color of the
border screen. Statements you can use to display
information in text mode are:

CLS SCREEN
COLOR WIDTH
LOCATE WRITE
PRINT

The following functions and system variables can be
used in text mode:

CSRLIN SPC
POS TAB
SCREEN

Another special feature you get in text mode if you
have the Color/Graphics Monitor Adapter is multiple
display pages. The Color/Graphics Monitor Adapter
has a 16K-byte screen buffer, but text mode needs only
2K of that (or 4K for 8-column width). So the buffer
is divided into pages, which can be written on and/or
displayed individually. There are eight pages,
numbered § to 7, in 40- column width; and four pages,
numbered P to 3, in 8A-column width. See “SCREEN
Statement™ in the BASIC Reference.

Graphics Modes

The graphics modes are available only if you have the
Color/Graphics Monitor Adapter.

You can use BASIC statements to draw in two graphic
resolutions:

« medium resolution — 320 by 20§ points and four
colors

« high resolution — 64 by 20 points and two colors

You can select the resolution you want to use with the
SCREEN statement.

3-49

3-50

The BASIC statements used for graphics are:

CIRCLE PRESET
COLOR PSET
DRAW PUT
GET SCREEN
LINE VIEW
PAINT WINDOW

The graphics functions are:

PMAP
POINT

Color Attributes: There is a numerical value that
describes the color of each point on the screen. This
numerical value is called an attribute. For example, if
you refer to the list of available colors in “COLOR
Statement (Text Mode)™ in the BASIC Reference, you
will see that the color blue is indexed by the attribute 1.

The attribute varies depending on the current screen
mode. The variance is based on the attribute range for
cach mode. The maximum attribute for each mode
determines how many bits are required to define the
attribute for a point—the number of bits per pixel.

Consider the attribute range for screen |, which is §-3.
In binary, 2 bits are required to represent a decimal
number as large as 3. For a screen mode with an
attribute range of P-1, only 1 bit is needed to represent
these values. Mathematically, the number of bits per
pixel is equal to the log base 2 of the maximum
attribute available for that screen mode. This concept
is particularly important when using the paint tiling
feature. See “PAINT Statement” in the BASIC
Reference for more information.

Medium Resolution: There are 32/ horizontal and
208 vertical points in medium resolution. Points are
numbered from left to right, top to bottom, starting
with zero. The upper left corner of the screen is point
0.,0; the lower right corner is point 319,199, The

numbering method is just the opposite of the usual
mathematical method for numbering coordinates.
Medium resolution is set by a SCREEN 1 statement.

Medium resolution is unusual because of its color
characteristics. When you put something on the screen
in medium resolution, you can specify a color attribute
number of 0, 1, 2, or 3. The colors for these attributes
are not fixed, as are the 16 colors in text mode. You
select the color for attribute number), which will be
your background color. Then you select one of two
“palettes” for the other three attributes by using the
COLOR statement. A palette is a set of three actual
colors to be associated with attributes 1, 2, and 3. If
you change the palette with a COLOR statement, all
the colors on the screen change to match the new
palette.

You can still display text characters on the screen when
you are in graphics mode. The size of the character
display area is the same as in text mode; that is, 25 lines
of 4P characters. In medium resolution, the foreground
is attribute 3, and the background is attribute §.

High Resolution: In high resolution there are 640
horizontal and 209 vertical points. As in medium
resolution, points are numbered starting with zero with
the lower right corner point being 639,199. High
resolution is set by the SCREEN 2 statement.

High resolution has only two colors: black and white.
Black is always # (zero), and white is always | (one).

When you display text characters in high resolution,
you get 80 characters per line. The foreground color
attribute is 1 and the background color attribute is 9.
Characters are always white on black.

Specifying Coordinates: The graphic statements
require information about where on the screen you
want to draw. You give this information in the form of
coordinates. Coordinates are generally in the form
(x,»). where x is the horizontal position, and y is the

3-51

vertical position. This form is known as absolute form
and refers to the actual coordinates of the point on the
screen, without regard to the last point referenced.

There is another way to show coordinates, known as
relative form. Using this form you tell BASIC where the
point is, relative to the last point referenced. This form
looks like:

STEP (xoffset,yoffset)

You indicate inside the parentheses the offser in the
horizontal and vertical directions from the last point
referenced.

Initially, (after SCREEN 1, SCREEN 2, WIDTH or
CLS) the “last point referenced” is the point in the
middle of the screen; that is (160,100) for medium
resolution, or (320,10f) for high resolution. Later
statements change the last point referenced. What each
graphics statement sets as the last point referenced is
indicated in the discussion of that statement in the
BASIC Reference.

Note: In BASIC 2.0 and later releases, images
defined with coordinates that are out of range are
clipped so that only points plotted within the
boundaries of the window are visible.

This example shows the use of both forms of
coordinates:

100 SCREEN 1
116 PSET (200,100) 'absolute form
120 PSET STEP (10,-20) 'relative form

This sets two points on the screen. Their actual
coordinates are (200,100) and (210,80).

3-52

Appendixes

Contents

Appendix A. BASIC Disk Input and Qutput
Specifying Filenamescoooveeiienaen.
Commands for Program Filesc00vees

Disk Data Files - Sequential and Random 1/O ..
Sequential Fileso.ooveeeie.onnn
Creating and Accessing a Sequential File
Adding Data to a Sequential File
Randomi File§ .- :ssses commmsarumsnxoss
Creating a Random File
Accessing a Random File

Appendix B. Memory Information
Memory Map - ... cowessemeenanssneiisn:
How Variables Are Stored
Keyboard Buffercocevnonnnn
Search Order for Adapters oonn
Switching Displaysccoieoaens

A-2

Appendix A. BASIC Disk Input and
Output

This appendix describes procedures and special
considerations for using disk input and output. It
contains lists of the commands and statements that are
used with disk files, and explanations of how to use
them. Several sample programs are included to help
clarify the use of data files on disk. If you are new to
BASIC or if you're getting disk-related errors, read
through these procedures and program examples to
make sure you're using all the disk statements correctly.

You may also want to refer to the IBM Personal
Computer Disk Operating System (DOS manual) for
other information on handling disks and disk files.

Note: Most of the information in this appendix
about program files and sequential files applies to
cassette 1/0 as well. However, the cassette cannotl
be opened in random mode.

Specifying Filenames

Filenames for disk files must conform to DOS naming
conventions in order for BASIC to be able to read
them. See ‘“Naming Files” in Chapter 3 to be sure you
are specifying your disk files correctly.

Commands for Program Files

The commands you can use with your BASIC program
files are listed below. For more detailed information on
any of these commands, see the BASIC Reference.

CHAIN NAME

KILL RUN
LOAD SAVE
MERGE

Disk Data Files - Sequential and
Random I/O

Two types of disk data files can be created and
accessed by a BASIC program: sequential files and
random access files.

Sequential Files

Sequential files are easier to create than random files,
but are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is stored sequentially, one item after
another, in the order that it is sent. Each item is read
back in the same way, from the first item in the file to
the last item.

The statements and functions used with sequential files
are:

CLOSE LOF

EOF OPEN

INPUT # PRINT #
INPUTS PRINT # USING
LINE INPUT # WRITE #

LOC

Creating and Accessing a Sequential File

To create a sequential file and access the data in it,
include the following steps in your program:

1. Open the file for output or append using the OPEN
statement.

2. Write data to the file using the PRINT #, WRITE
#. or PRINT # USING statements.

3. To access the data in the file, you must close the file
(using CLOSE) and reopen it for input (using
OPEN).

4. Use the INPUT £ or LINE INPUT # statements to
read data from the sequential file into the program.

These steps are shown in PROGRAMI.

A-5

A-6

10 REM PROGRAM1 - SEQUENTIAL FILES

20 OPEN "DATA" FOR OUTPUT AS #1 'STEP 1
30 FOR I=1 TO 1040 PRINT #1,1 'STEP 2
50 NEXT

60 CLOSE 'STEP 3

70 OPEN "I",#1,"DATA"

80 IF EOF(1) THEN CLOSE:END

90 INPUT #1,A 'STEP 4

100 PRINT A

110 GOTO 80

Notice the two ways of writing the OPEN statement in
line 20 and line 70. See “OPEN Statement” in the
BASIC Reference for details of the syntax of each form
of OPEN.

In line 80 the EOF function tests for end of file. This
prevents an Input past end error. The end of file is
indicated by a special character in the file. This
character has ASCII code 26 (hex 1A). Therefore, you
should not put a CHR$(26) in a sequential file.

A program that creates a sequential file can also write
formatted data to the disk with the PRINT # USING
statement. For example, the statement:

PRINT #1,USING "####.## ";A,B,C,D

can be used to write numeric data to disk without
explicit delimiters. The space at the end of the format
string separates the items in the disk file.

The LOC function, when used with a sequential file,
returns the number of records that have been written to
or read from the file since it was opened. (A record is a
128-byte block of data.)

The LOF function returns the number of bytes
allocated to the file. For files created by BASIC 1.10.
LOF will return a multiple of 128, rounding upward if
necessary. For files created outside BASIC (using
EDLIN, for example) and for files created by BASIC
2.0 and later releases, LOF returns the actual number
ol bytes allocated.

Adding Data to a Sequential File

To add data to a sequential file residing on disk, you
cannot simply open the file for output and start writing
data. When you open a sequential file for output, you
destroy its current contents. Instead, you should open
the file for APPEND. See “OPEN Statement” in the
BASIC Reference for details.

Random Files

Creating and accessing random files require more
program steps than sequential files, but there are
advantages to using random files. For instance,
numbers in random files are usually stored on disk in
binary formats, while numbers in sequential files are
stored as ASCII characters. Therefore, in many cases
random files require less space on disk than sequential
files.

The biggest advantage to random files is that data can
be accessed randomly; that is, anywhere on the disk. It
is not necessary to read through all the information, as
with sequential files. This is possible because the
information is stored and accessed in distinct units
called records, and each record is numbered.

Records can be any length up to 32767 bytes. The size
of a record is not related to the size of a sector on the
disk (512 bytes). BASIC automatically uses all 512
bytes in a sector for information storage. It does this
by both blocking records and spanning sector
boundaries (that is, part of a record can be at the end
of one sector and the other part at the beginning of the
next sector).

The statements and functions used with random files

are:
CLOSE OPEN
FIELD PUT
GET
LSET/RSET

A-7

CVD MKD$

CVI MKI$
CVS MKSS$
LOC
LOF

Creating a Random File

The following program steps are required to create a
random file:

1. Open the file for random access. The example that
follows specifies a record length of 32 bytes. If the
record length is omitted, the default is 128 bytes.

2. Use the FIELD statement to allocate space in the
random buffer for the variables that will be written
to the random file.

3. Use LSET or RSET to move the data into the
random buffer. Numeric values must be made into
strings when placed in the buffer. To do this. use
the “make” functions: MKI$ to make an integer
value into a string; MKS$ for a single-precision
value; and MKDS for a double-precision value.

4. Write the data from the buffer to the disk using the
PUT statement.

These steps are shown in PROGRAM?2.

Note: Do not use a string variable that has been
defined in a FIELD statement in an input statement
or on the left side of an assignment (LET)
statement. This causes the pointer for that variable
to point into string space instead of the random file
buffer.

Look at PROGRAM2. It writes to a random file the
information entered at the keyboard. Each time the

A-8

PUT statement is executed, a record is written to the
file. The two-digit code that is input in line 3§ becomes
the record number.

10 REM PROGRAM2 - CREATE A RANDOM FILE
20 OPEN "DATAY" AS #1 LEN=32 'STEP 1
30 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$ 'STEP 2
40 INPUT "2-DIGIT CODE";CODE%

50 IF CODE%=99 THEN CLOSE: END

6@ INPUT "NAME";X$

70 INPUT "AMOUNT";AMT

80 INPUT "PHONE";TELS: PRINT

90 LSET N$=X$ 'STEP 3

100 LSET A$=MKS$(AMT) 'STEP 3

110 LSET P$=TEL$ 'STEP 3

120 PUT #1,CODE% 'STEP 4

130 GOTO 40

Accessing a Random File

The following program steps are required to access a
random file:

1. Open the file for random access.

2. Use the FIELD statement to allocate space in the
random buffer for the variables that will be read
from the lile.

Note: In a program that performs both input
and output on the same random file, you can
usually use just one OPEN statement and one
FIELD statement.

3. Use the GET statement to move the desired record
into the random buffer.

4. The data in the buffer can now be accessed by the
program. Numeric values must be converted back
to numbers using the “convert” functions: CVI for
integers; CVS for single-precision values: and CVD
for double-precision values,

A-9

A-10

These steps are shown in PROGRAM3.

PROGRAM3 accesses the random file that was created
in PROGRAM?2. When the two-digit code is entered at
the keyboard, the information associated with that code
is read from the file and displayed.

10 REM PROGRAM3 - ACCESS A RANDOM FILE

20 OPEN "DATAY" AS #1 LEN=32 'STEP 1

30 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$ 'STEP 2
40 INPUT “2-DIGIT CODE";CODE%

50 IF CODE%=99 THEN CLOSE: END

60 GET #1, CODE% 'STEP 3

70 PRINT N$ 'STEP 4

80 PRINT USING "$$###.##";CVS(AS) 'STEP 4

90 PRINT Ps

100 GOTO 40

With random files, the LOC function returns the
current record number. The current record number is
the latest one used in a GET or PUT statement. For
example, the statement

IF LOC(1)>58 THEN END

ends program execution if the current record number in
file #1 is higher than 5.

Appendix B. Memory Inf ormation

This appendix contains information relating to BASIC’s
memory, including a memory map and details on the
storage of variables, the keyboard buffer, and the
search order for adapters.

See the IBM Personal Computer Technical Reference
manual for technical information not presented in this
manual or the BASIC Reference.

Memory Map

0000:0000

START OF

USER AREA

TOP OF CS

TOP OF
DS,ES,SS

A000:0000
BOOD:0000
F400:0000

B-2

=~ o

SEE="x>rz=z

SYSTEM INTERRUPT VECTORS

Dos

DOS WORKAREA
BASIC EXTENSIONS

INTERPRETER WORKAREA
File Buffers
COM Buffers
RS232 Code

YOUR BASIC PROGRAM

SPACE FOR USER-INSTALLED
MEMORY EXPANSION

SYSTEM

SCREEN BUFFER

READ-ONLY MEMORY —BIOS

This is a memory map for Disk and Advanced BASIC. DOS and the BASIC
extensions are not present for Cassette BASIC. Addresses are in the
hexadecimal form SEGMENT-OFFSET.

Allocation of space in
this area is
determined by the /F;,
/S:, and /C: switch
settings when BASIC
is invoked. Presence
of RS232 code adds
approximately 1500
bytes. Boundaries of
buffers and RS232
code are dynamic.

These areas are
allocated dynamically
during program
execution. Each area
expands in the
indicated direction.

When string space
and array space meet,
there is no free
memory.

Stack size is 512
bytes unless set by
CLEAR command.

How Variables Are Stored

Scalar variables are stored in BASIC's data area as

Byte

0

follows:

2 3 4 4+length

type

char

AN AN
name data

char length chars | 2, 3, 4, or B bytes

length

1ype

name

data

AN e

identifies the type of variable:

integer

string
single-precision
double-precision

R WK

is the name of the variable. The first two
characters of the name are stored in bytes 1
and 2. Byte 3 tells how many more
characters are in the variable name. These
additional characters are stored starting at
byte 4.

Note that this means any variable name takes
up at least three bytes. A one- or
two-character name occupies exactly three
bytes; an x character name occcupies X+ 1
bytes.

follows the name of the variable, and can be
two. three, four, or eight bytes long (as
described by 7ype). The value returned by
the VARPTR function points to this data.

B-3

For string variables, dara is the string descripror:

* The first byte of the string descriptor contains the
length of the string (9 to 255).

» The last two bytes of the string descriptor contain
the address of the string in BASIC's data space (the
offset into the default segment). Addresses are
stored with the low byte first and the high byte
second, so:

— The second byte of the string descriptor contains
the low byte of the offset.

— The third byte of the string descriptor contains
the high byte of the offset.

For numeric variables duta contains the actual value of
the variable:

 Integer values are stored in two bytes, with the low
byte first and the high byte second.

 Single-precision values are stored in four bytes in
BASIC’s internal floating point binary format.

« Double-precision values are stored in eight bytes in
BASIC's internal floating point binary format.

Keyboard Buffer

Characters typed on the keyboard are saved in the
keyboard buffer until they are processed. Up to 15
characters can be held in the buffer; if you try to type
more than 15 characters, the computer beeps.

INKEYS$ reads only one character from the keyboard
buffer even if there are several characters pending
there. INPUTS$ can be used to read multiple
characters; however, if the requested number of
characters is not already present in the buffer, BASIC
waits until enough characters are typed.

The system keyboard buffer can be cleared by the
following lines of code:

DEF SEG=Q: POKE 1@5@, PEEK(1052)

This technique can be used, for example, to clear the
buffer before you ask the user to “press any key.”

Search Order for Adapters

The printers associated with LPT1:. LPT2:, and LPT3:
are assigned when you switch your computer on. The
system looks for printer adapters in a particular
sequence; the first printer adapter found becomes
LPT1:: the second adapter (if one exists) becomes
L.PT2:: and the third (il it exists) becomes LPT3:. The
search order is as follows:

1. An IBM Monochrome Display and Parallel Printer
Adapter

2. A Parallel Printer Adapter

3. A Parallel Printer Adapter that has been modilied to
change its base address

If a printer was rerouted using the MODE command
from DOS, the change is effective in BASIC as well.

B-5

The communication devices COM1: and COM?2: are
assigned in a manner similar to printers. Their search
order is:

1. An Asynchronous Communications Adapter
2. A modified Asynchronous Communications
Adapter

Switching Displays

B-6

If you have both the IBM Color/Graphics Monitor
Adapter and the IBM Monochrome Display and
Parallel Printer Adapter in your IBM Personal
Computer, the one BASIC normally writes to is the
Monochrome Display. However, you can switch from
one display to the other from BASIC by using the
following code:

10 ' switch to monochrome adapter

20 DEF SEG = @
30 POKE &H410, (PEEK(&H410) OR &H30)
4@ SCREEN 0

50 LOCATE ,,1,12,13

10 ' switch to color adapter

20 DEF SEG = @

30 POKE &H410, (PEEK(&H41G) AND &HCF) OR &H1Q
4@ SCREEN 1,0,0,0

50 SCREEN @

60 WIDTH 4p

70 LOCATE ,,1,6,7

Note: When you use this technique, the screen you
are switching ro is cleared. Keep in mind that you
may need to keep track of the cursor location
independently for each display.

Index

Special Characters

< v

I 3-18

$ 3-18

/D (double precision) v
/M: switch v

% 3-18
>V
3-18

A

A: 3-39
absolute form for specifying
coordinates 3-52
accuracy 3-12
adapters
communications B-6
display 3-46, B-6
printer B-5
adding characters 2-25
adding program lines 2-27
addition 3-24
Advanced BASIC iii, 1-3, 1-5
Advanced BASIC features 1-6
all points addressable 1-3
alphabetic characters 3-4
Alt-keywords 2-16
AND 3-28
append A-7
arithmeltic operators 3-24
arrays 3-19

defining 3-19

dimensioning 3-19

elements in 3-19

subscripts in 3-19
assembly language
subroutines v
asynchronous communications
(RS232) 1-5
Asynchronous
Communications
Adapter 2-31
attributes 3-50
AUTO 3-3

B

B: 3-39
background 3-47
Backspace 2-22
BASIC command line 2-4, 2-5
format 2-5
options 2-4
BASIC Compiler iv
BASIC interpreter iii
BASIC 2.0 changes v
BASIC 3.0 changes ix
BASIC, starting 2-3
beeping from the
computer B-5
bits per pixel 3-50
blanks 3-6
block size 2-9
boolean operations 3-27

Index-1

border screen 3-48
branching, automatic 1-6
Break 2-22
bringing up BASIC 2-3
buffer B-5
communications 2-8
keyboard B-5
random file 2-7
screen 3-49
built-in functions
See functions
built-in-speaker 1-6
bytes free 1-4

C

C: 3-39

C: switch 2-8

canceling a line 2-25
Cassette BASIC iii, 1-3, 1-4
cassette [/O A-3

CASI: 3-39

CHAIN statement 1-4
changes in BASIC v

changing BASIC program 2-26

changing characters 2-24
changing lines on the
screen 2-26
changing program lines 2-27
character set 3-4
character set, extended 1-3
characters, international 1-3
CHDIR command viii
child processes from BASIC,
SHELL ix
CIRCLE vii, 1-6
clearing memory 2-28
COLOR
in graphics modes 3-51
in text mode 3-48

Index-2

color attributes 3-50
color, figure and border vi
COMM program 2-31
command iii
command level 2-14, 2-24
command line v
command line options 2-4
command line switches 2-6,
2-7
commands that allow paths

BLOAD vi

BSAVE vi

KILL vi

LOAD vi

MERGE vi

NAME vi

RUN vi

SAVE vi
comments 3-4
communicate with
user-installed device
drivers ix
communications

buffer size 2-8
comparisons

numeric 3-26

string 3-27
complement, logical 3-28
complement, twos 3-30, 3-31
COMI1: 3-39
COMI1: B-6
COM2: 3-39
COM2: B-6
concatenation 3-34
conjunction 3-28
constants, string and
numeric 3-8
continuous music vii
converting

one numeric precision to

another 3-14
coordinates 3-51

coordinates of screen or
viewport, redefine viii
correcting current line 2-24
Ctrl Key 2-17
Ctrl-Break 2-17
Ctrl-G 2-17
Ctrl-PrtSc 2-17
Ctrl-Break 2-22
Ctrl-PriSe v
current directory 3-42
cursor control keys 2-18
Cursor Down key 2-18
Cursor Left key 2-19
Cursor Right key 2-19
Cursor Up key 2-18

D

D: 3-39

D switch 2-10

data segment 2-8

date 1-5

declaring variable types 3-18,
3-19

default directory 3-42

defining arrays 3-19

DEFtype (-INT, -SNG, -DBL,
-STR) 3-19

Del key 2-21

DELETE 3-3

deleting a program 2-28

deleting characters 2-24

deleting program lines 2-28

descriptor, string B-4

device channels, information
flow ix

device driver 3-44

device name 3-38, 3-40

device support ix, 3-44

dimensioning arrays 3-19

direct mode 2-14
directory types 3-42
directory, change current viii
directory, creates on specified

disk viii
directory, removes from

specified disk wiii
disjunction 3-28
disk ix
Disk BASIC iii, 1-3, 1-5
Disk BASIC features 1-5
disk I/0O Appendix A
diskette ix
display adapters 3-46, B-6
display pages 3-49
display screen, using 3-46
displays B-6

switching of B-6
division 3-24
DOS
returning to 2-4

double precision v, 2-10, 3-12
double-precision expressions Vi
DRAW vii, 1-6
DRAW statement Vi
duplicating a program

line 2-26

E

EDIT 3-3

editing program lines 2-26

editor 2-18

editor keys 2-18
Backspace 2-22
Ctrl-Break 2-22
Citrl-End 2-20
Ctrl-Home 2-18
Cursor Down 2-18
Cursor Left 2-19

Index-3

Cursor Right 2-19

Cursor Up 2-18

Del 2-21

End 2-20

Esc 2-22

Home 2-18

Ins 2-21

Next Word 2-19

Previous Word 2-20
elements 3-19
End key 2-20
end-ol-file condition vii
entering BASIC program 2-26
entering data 2-18
ENVIRON statement ix
ENVIRONS function ix
environment table ix
EOF A-6
EOF(0) vii
equivalence 3-28
EQV 3-28
erasing a program 2-28
erasing characters 2-24
erasing part of a line 2-25
erasing program lines 2-28
ERDEV and ERDEVS device
error variables ix
Esc key 2-22
event trapping 1-6
exclusive or 3-28
executable statements 3-3
exponentiation 3-24
expressions

numeric 3-23

string 3-34
extended character set 1-3
extension, filename 3-36

Index-4

F

F: switch 3-36
false 3-25,3-27
file 3-35
file specification 3-39
filename 3-36, 3-40
filename extension 3-36
files 3-35
file number 3-35
naming 3-39
opening 3-35
filespec vi, 2-5
fixed disk ix
fixed point 3-9
floating point 3-9
foreground 3-47
formatting math output 3-22
function iii
function keys 2-15
functions 3-31, 3-34

G

GET 1-6

GET (files) A-9

GET statement vii
graphics 3-46
graphics capability 1-3
graphics coordinate vi
graphics modes 3-49
graphics, advanced 1-6
Greek letters 1-3

H

Handbook, BASIC iii
hexadecimal 3-11

hierarchy of operations 3-32
high resolution 3-51

Home key 2-18

how to format output 3-22

1/0 device support 1-3

[/0 statements Appendix A

1/0 to disk in addition to
cassette 1-5

IBM PC Disk Operating
System iv

IBM PC Disk Operating
System Technical
Reference iv

IBM PC Guide to
Operations iv

IBM PC jr. iii

IBM PC Technical
Reference iv

IMP 3-28

implication 3-28

indirect mode 2-14

initializing BASIC 2-3

input and output 3-35

input file mode A-5

input, standard 2-6

Ins key 2-21

insert mode 2-21

inserting characters 2-25

INT 24 error codes, read ix

integer 3-9, 3-12

integer division 3-24

internal clock 1-5

international characters 1-3
interpreter, BASIC iii, 1-3
intrinsic functions

See functions
IOCTL statement ix
[OCTLS function ix

J

joysticks 1-3

K

KEY statements vii
keyboard 2-15

buffer

See buffer, keyboard

keyboard buffer B-5

clearing of B-5
keyboard input 2-6
KYBD: 3-38

L

last point referenced 3-52
light pen 1-3
LINE vii

line clipping vs. wraparound in

graphics vii
line feed 2-24
LINE statement vi

Index-5

lines
BASIC program 3-3
line numbers 2-14, 3-3
on screen 3-47
wrapping 2-21]

LIST 3-3

LOF function vii

logical line 2-20, 2-21, 2-22,

2-24,2-27

logical operators 3-27
true-false table 3-27

LPTI: 3-38, B-5

LPT2: 3-38, B-5

LPT3: 3-38, B-5

M

M: switch 2-8

making corrections 2-24

maps expression to physical
coordinates vii

maps expression to world
coordinates vii

math output, formatting 3-22

max blocksize v, 2-9

max workspace 2-8

MB buffer vii

medium resolution 3-50

memory information B-1,
Appendix B

memory location 2-9

memory map B-2

MKDIR command viii

MOD 3-25

modulo arithmetic 3-25

multiple statements on a
line 3-3

multiplication 3-24

Music Background buffer vii

music support, advanced 1-6

Index-6

music, continuous vii

N

naming files 3-39

negation 3-24

network services 2-31

Next Word 2-19
nonexecutable statements 3-3
NOT 3-28

numeric characters 3-4
numeric comparisons 3-26
numeric constants 3-9
numeric expressions 3-23
numeric functions 3-31
numeric variables 3-17, 3-18

O

octal 3-11
octave raise and lower vi
Ok prompt 2-14
ON PLAY statement vij
ON TIMER statement vii
OPEN (file) A-5, A-8
OPEN "COM... statement vi
operators
arithmetic 3-24
concatenation 3-34
functions 3-31, 3-34
logical 3-27
numeric 3-23
relational 3-25
string 3-34
options, command line 2-4
OR 3-28

or, exclusive 3-28 Q
order of execution 3-32
output file mode A-5

output, formatting 3-22 Quick Reference iii
output, standard 2-6

overscan 3-48

R
P

random files A-7
RANDOMIZE statement vi

PAINT vii, 1-6) record length

paint area with pattern vi maximum 2-7

PAINT statement vi redirect standard input and
palette 3-51 output v

parentheses 3-32 redirection of 2-12

parity checking vi redirection of standard input
path 2.-5. 3—f10 and output 2-12

PE option vi B Reference, BASIC iii
physmal coordinates vii related publications iv

pixel 3-50 ' relational operators 3-25
PLAY statement vi, 1-6 relative form for specifying
PLAY(n) function wvii coordinates 3-52

plot a pattern vi remarks 3-4

PMAP 1-6 replacing program lines 2-27
PMAP function vii requirements

POINT vii, 1-6 See system requirements
POINT function vi reserved words 3-6, 3-17
precedence 3-32 list of 3-6

precisiqn 3:12 resolution, medium or high 1-3
PRESET vii RMDIR command viii
Previous Word 2-20 root directory 3-42

printers 1-5 _ rounding 3-14

Program Editor 2-18 RS232

PSET vii, 1-6 See communications
PUT I_—() RS232 support 1-5

PUT (files) A-8 running a program

PUT statement vii COMM 2-31

on another diskette 2-32
SAMPLES 2-29

Index-7

S

S: switch 2-7
SAMPLES program 2-29
screen 3-47
use of 3-46
screen displays 3-46
screen or viewport, redefine
coordinates viii
screen output 2-6
SCRN: 3-38
scrolling 3-47
search order for adapters B-5
semantics iii
sequential files A-4
SHELL. ix
SHELL statement 2-9
single precision 3-12
soft keys 2-15
sound 1-3
spaces 3-0
special characters 3-5
specification of files 3-39
specifying coordinates 3-51
stack segment 2-8
standard input device 2-6
standard output 2-6
standard output option 2-6
starting BASIC 2-3
statement iii
statements that allow paths
CHAIN vi
OPEN vi
stdin 2-6
stdout 2-6
STEP 3-52
string comparisons 3-27
string constants 3-8
string descriptor B-4
string expressions 3-34
string functions 3-34
string space 2-9

Index-8

string variables 3-17, 3-18
style vi
subdirectories 3-42
subtraction 3-24
summary of changes v
switches 2-6, 2-7
switching displays B-6
syntax iii
syntax errors 2-28
SYSTEM command 2-4
system requirements
Advanced 1-5
Cassette 1-4
Disk 1-5

T

Tab key 2-23

techniques, formatting

output 3-22

text mode 3-47

tiling vi

lime 1-5

time from midnight vii

time from System Reset vii

TIMER function vii

trapping vii

tree-structured

directories 3-43

true 3-25, 3-27

true-false table 3-27

truncation of program

lines 2-26

twos complement 3-30, 3-31

type-declaration

characters 3-18

types of directories 3-42
root directory 3-42
subdirectories 3-42

U

user workspace 2-9
using a program 2-29

\%

variables 3-17, 3-18, B-3
declaring types 3-17
naming 3-17
storage of B-3
type-declaration

characters 3-18
types of 3-17

versions line explained 1-3

versions of BASIC 1-3

VIEW vii, 1-6

VIEW statement viii

viewport (area), define within

limits of screen viii

visual page
See display pages

W

WINDOW vii, 1-6

WINDOW statement viii

word 2-19

workspace 2-9
maximum 2-9

world coordinates vii

wrapping, line 2-21, 2-23

X

XOR 3-28

Index-9

Notes:

| (|
@l

|BM United Kingdom International Products Limited
PO Box 41, North Harbour, Portsmouth PO6 3AU, England

Printed in Great Britain by Ben Johnson & Co. Ltd., Yorl‘l.

