Contents—ABIOS

Section 1. Introduction to Advanced BIOS 1-1
Introduction 1-3
Data Structures 1-4
Initialization 1-5
Transfer Conventions, 1-6
Interrupt Processing 1-7
Extending ABIOS 1-8
Section 2. Data Structures 2-1
Introduction 2-3
CommonDataArea 2-3
Function Transfer Table 2-7
DeviceBlock 2-9
Section 3. Initialization 31
Introduction 3-3
Build System Parameters Table—Operating System 3-4
Build System Parameters Table—BIOS 3-4
Build Initialization Table—Operating System 3-6
Build Initialization Table—BIOS 3-6
Build Common Data Area—Operating System 3-8
Initialize Pointers—Operating System 3-9
Initialize Data Structures—ABIOS 3-10
Logical ID 2 Initialization 3-12
Build Protected-Mode Tables 3-13
Section 4. Transfer Conventions 4-1
RequestBlock 4-3

Functional Parameters 4-5

Service-Specific Parameters 4-5
ABIOS Transfer Convention 4-13
Operating-System Transfer Convention 4-15
Section 5. Additional Information 5-1
Interrupt Processing L. 5-3

InterruptFlow 5-3

Interrupt Sharing 5-3

Defauit interruptHandler 5-5
Adding, Patching, Extending, and Replacing 5-6

Adapter-ROM Structure 5-7

RAM-Extension Structure 5-9

Adding 5-11

© Copyright IBM Corp. 1991 3

Patching 5-12
Extending 5-13
Replacing 5-15
Considerations for RAM Extensions 5-16
Operating-System Implementation Considerations 5-18
ABIOSRules 5-18
Considerations for Bimodal Implementations 5-20
Section 6. Interfaces 6-1
Device ID 01H—Diskette 6-1D01-1
Device ID 02H—Fixed Disk 6-1D02-1
Device ID03H—Video 6-1D03-1
Device ID 04H—Keyboard 6-1D04-1
Device ID 05H—Parallel Port 6-1D05-1
Device ID 06H—Asynchronous Communication 6-1D06-1
Device ID 07H—System Timer 6-1D07-1
Device ID 08H—Real-TimeClock 6-1D08-1
Device ID 09H—System Services 6-1D09-1
Device ID 0AH—Nonmaskable Interrupt (NMI) 6-ID0A-1
Device ID 0BH—Pointing Device 6-1D0B-1
Device iD OEH—Nonvolatile Random Access Memory
(NVRAM) . .. 6-1DOE-1
Device ID OFH—Direct Memory Access (DMA) 6-IDOF-1
Device ID 10H—Programmable Option Select (POS) 6-ID10-1
Device ID 16H—Keyboard Security 6-ID16-1
Device ID 177H—SCSI Subsystem Interface 6-ID17-1
Device ID 18H—SCSI Peripheral Type 6-1D18-1

Section 1. Introduction to Advanced BIOS

Introduction 1-3
Data Structures 1-4
Initialization 1-5
Transfer Conventions 1-6
Interrupt Processing 1-7
Extending ABIOS L 1-8

© Copyright IBM Corp. 1991 11

Notes:

1-2 Introduction to Advanced BIOS—September 1991

Introduction

Advanced BIOS (ABIOS) is firmware that isolates an operating
system from the low-level system hardware interface in IBM Personali
System/2 systems that use 80286 or 80386 microprocessors. The
operating system makes functional requests of ABIOS (read or write)
instead of directly manipulating the I/0 ports and control words of the
system hardware. This enables details of the hardware attachments
and the timings of the hardware interfaces to be altered without
disturbing the operating-system components above the ABIOS
interface.

ROM BIOS operates as a single-tasking component in which
addressing capabilities are limited to less than 1 megabyte of
memory and only in the real-address mode (real mode) of the Intel
microprocessor. ABIOS supports addressing above 1 megabyte,
using the protected virtual address mode (protected mode) of the
Intel microprocessor. ABIOS is contained in ROM but does not
prevent a RAM implementation. ABIOS can be operated in the real
mode, in the protected mods, or in a bimodal environment using both
the real mode and the protected mode. ABIOS provides a data
structure for implementing a protected-mode or bimodal (real and
protected modes) operating system. In addition, ABIOS can run in
virtual 8086 mode.

Requests to ABIOS that are made by an operating system fall into
three categories: single-staged, discrete multistaged, and continuous
multistaged. Single-staged requests perform the requested function
before returning to the caller. Discrete multistaged requests start an
action or operation that involves a delay before the operation is
completed. Continuous multistaged requests start an action or
operation that also involves a delay but never ends. For multistaged
operations, control is returned to the caller during these delays so
that the processing time can be used. An interrupt from an I/O device
usually indicates completion of a stage of the operation.

Introduction to Advanced BIOS—September 1991 1-3

The following figure shows the three categories of ABIOS requests.

Single-Staged

Start - Complete

Discrete Multistaged

LStTI__.' Stage '——LStag:H Complete]

Continuous Multistaged

(o o sage

Figure 1-1. Types of Requests

Data Structures

Requests to ABIOS that are made by an operating system are made
through transfer conventions that are provided by the ABIOS
structure. Transfer conventions require data structures that link the
operating system to the device-function routines of each supported
device. These data structures are the common data area, function
transfer tables, and device blocks. They reside in system memory
and are initialized during ABIOS initialization.

Transter conventions that are provided by ABIOS are defined to
enable operations that use the real mode, the protected mode, or
both modes of an Intel microprocessor. To provide flexibility in
implementing a real-mode, protected-mode, or bimodal operating
system, the common data area links all ABIOS pointers into a single
structure (see "Common Data Area” on page 2-3). This structure
contains the function-transfer-table pointers, the device-block
pointers, and the ABIOS data pointers.

ABIOS entry points are stored in vector tables called function transfer
tables (see “Function Transfer Table” on page 2-7). Each supported
ABIOS device has an associated function transfer table. The first
three entries of the function transfer table are structured entry
routines: the Start routine, the Interrupt routine, and the Time-Out
routine.

14 Introduction to Advanced BIOS—September 1991

ABIOS routines require a permanent work area, called a device
block, for each device (see “Device Block” on page 2-9). Hardware
port addresses, interrupt levels, and device-status information are
stored in a device block.

Initialization

Initialization is a defined protocol between ABIOS and an operating
system. The operating system plays a major role in the initialization
process, including starting the process. Until the operating system
starts the initialization process, ABIOS cannot be used (see

Section 3, “Initialization”). The initialization process must occur in
the real mode of the microprocessor. It consists of three steps:

1. The operating system calls BIOS to build the system parameters
table. This table describes the number of devices that are
available in the system, common entry points, and system-stack
requirements.

2. The operating system calls BIOS to build the initialization table.
This table defines the initialization information for each device
that the system supports. This information is used to initialize
device blocks and function transfer tables.

3. The operating system allocates memory for the common data
area, using the initialization information that was returned in step
2. The memory for device biocks and function transfer tables is
allocated, and the device-block pointers and
function-transfer-table pointers are initialized in the common data
area. Then the operating system calls ABIOS to build a device
block and function transfer table for each device.

Introduction to Advanced BIOS—September 1991 1-5

The flow of the initialization process is shown below.

Build System Parameters Table
Interrupt 15H, (AH) = 04H

1

Build Initialization Table
Interrupt 15H, (AH) = 05H

'

Build Common Data Area,
the Device Blocks and
the Function Transfer Tables

Figure 1-2. Flow of the Initialization Process

Transfer Conventions

After ABIOS is initialized, requests are presented through a
parameter block, called a request block. A request block has fields
that identify the target device, the requested operation, details of the
request, memory locations that are involved in a data transfer, and
the status of the staged or completed request. Request blocks are
described in detail in Section 4, “Transfer Conventions.”

ABIOS is implemented as a call-return programming model, using
either the ABIOS transfer convention or the operating-system transfer
convention. These two calling conventions give an operating system
flexibility in calling ABIOS. Both calling conventions use stacks to
pass request information to the target ABIOS device routine.

The ABIOS transfer convention is the simplest calling sequence for
the operating system. The operating system passes the
common-data-area pointer and the request-block pointer to one of
three common entry points: the Common Start routine, the Common
Interrupt routine, and the Common Time-Out routine. The pointers to
these common routines are returned to the operating system during
initialization. The common routines use the request-block
information and the common-data-area pointer to get the
device-block pointer and the function-transfer-tabie pointer from the
common data area. The common routine then transfers control to the
requested ABIOS routine whose pointer is in the function transfer
table.

1-6 Introduction to Advanced BIOS—September 1991

The flow of the ABIOS transfer convention is shown below.

Operating System Operating System Calls .| Common Routine
Builds Request Block Common Routines Selects and Invokes
ABIOS Functions

Figure 1-3. Flow of ABIOS Transfer Convention

The operating-system transfer convention requires the operating
system to determine the address for the requested ABIOS routine.
This gives the operating system flexibility in maintaining
ABIOS-routine addresses that are frequently called. This method is
usefut for handling interrupts from character and programmed-1/0
devices that repeatedly call a single routine. The common-data-area
pointer, the request-block pointer, the function-transfer-table pointer,
and the device-block pointer are required on entry to the ABIOS
routine.

The flow of the operating-system transfer convention is shown below.

Operating System Operating System
Builds Request Block Selects and Invokes
ABIOS Routines

Figure 1-4. Flow of Operating-System Transfer Convention

The ABIOS transfer convention and the operating-system transfer
convention are described in detail in Section 4, “Transfer
Conventions.”

Interrupt Processing

For multistaged requests, interrupts from hardware devices cause the
microprocessor to branch to predefined addresses in the interrupt
vector table. When an interrupt occurs, ABIOS expects the operating
system to receive control. ABIOS provides interrupt routines for the
processing of ABIOS interrupts. Interrupt processing is described in
“Interrupt Processing” on page 5-3.

Introduction to Advanced BIOS—September 1991 1-7

Extending ABIOS

The ability to add, patch, extend, and replace ABIOS routines is
necessary for supporting new devices or device features on the
system. For more information, see Section 5, “Additional
Information.”

1-8 Introduction to Advanced BIOS—September 1991

Section 2. Data Structures

Introduction 2-3
CommonDataArea 2-3
Function TransferTable 2-7
DeviceBlock 2-9

© Copyright IBM Corp. 1991 2-1

Notes:

2-2 Data Structures—September 1991

Introduction

ABIOS uses data structures to link the operating system to the
device-function routines for each ABIOS device. These data
structures are the common data area, the function transfer table, and
the device block. They reside in system memory and are initialized
during ABIOS initialization.

Transfer conventions that are provided by ABIOS are defined to
enable operations that use the real mode, the protected mode, or
both modes of an Intel microprocessor. ABIOS provides the common
data area for implementing a real-mode, protected-mode, or bimodal
operating system. This structure contains the function-transfer-table
pointers, the device-block pointers, and the ABIOS data pointers. The
common data area links all ABIOS pointers in a single structure to
enable an operating system to manage ABIOS requests in both
operating environments of the Intel microprocessors.

Common Data Area

The common data area contains data pointers that facilitate the
ABIOS operation in a bimodal environment. These data pointers are
established during ABIOS initialization and contain information for
each device that the system supports. The common data area is
required in all three operating modes.

Each ABIOS device has a physical-device identifier, called a device
ID. A device ID has one or more logical IDs that serve as device
handlers and are used by the operating system to make requests of
ABIOS. The common data area is made up of two arrays: an array of
logical-ID entries and an array of data-pointer entries. Each
logical-ID entry contains a pointer to a device block and a pointer to a
function transfer table. Each data-pointer entry contains memory
addresses that are used by ABIOS services.

On each request to ABIOS, a segment or selector that has an
assumed offset of 0 and points to the common data area is passed to
ABIOS. This pointer is referred to as the anchor pointer to the
common data area.

Data Structures—September 1991 2-3

The following diagram shows the common data area and its
relationship to the other ABIOS data structures.

Request Block

Logical ID

I Anchor Pointer

- Common Data Area

Data Pointers Offset
Number of Logical IDs

Device Block

P []
- Device Block Pointer Device Data
Function Transfer Table Pointer L

> Data Pointer ———’{ Device Memory

Function Transfer Table ABIOS Functions
] []
Function 1 Pointer | Function 1
Function 2 Pointer »| Function 2
Function 3 Pointer Function 3
[] []

Figure 2-1. Flow of Common Data Area

2-4 Data Structures—September 1991

The following figure shows the format of the common data area.

Size Offset Description

Word 00H Offset to data pointer 0

Word 02H Count of logical IDs

DWord 04H Reserved

DWord 08H Device-block pointer logical ID

DWord OCH Function-transfer-table pointer logical 1D 1
Dword 10H Device-block pointer logical 1D 2

DWord 14H Function-transfer-table pointer logical ID 2
DWord 08Hxn Device-block pointer logical ID n

DWord (08Hxn) + 04H Function-transfer-table pointer logical ID n
Word (08Hxn) + 08H Data pointer p length

Word (08Hxn) + 0AH Data pointer p offset

Word (08Hxn) +0CH Data pointer p segment

Word {08Hxn) + OEH Data pointer p—1 length

Word (08Hxn) + 10H Data pointer p~1 offset

Word (08Hxn) + 12H Data pointer p—1 segment

Word (08Hxn) + (06Hxp) + 08H Data pointer 0 length

Word (08Hxn) + (06Hxp) + 0AH Data pointer 0 offset

Word (08Hxn) + (06Hxp) + OCH Data pointer 0 segment

Word (08Hxn) + (06Hxp) + 0EH Data pointer count

n=the number of logical IDs

p=the number of data pointers minus 1

Figure 2-2. Common Data Area
The common-data-area entries are;

Offset to Data Pointer 0: This field, combined with the anchor
pointer, produces a pointer to the Data Pointer 0 Length field.

Count of Logical IDs: This field contains the number of device-block
and function-transfer-pointer pairs.

Device-Block Pointers: These fields contain the pointers to the
device blocks for the specified logical IDs.

Function-Transfer-Table Pointers: These fields contain the pointers
to the function transfer tables for the specified logical IDs.

Data Structures—September 1991 2-5

Data-Pointer Lengths: These fields contain the lengths of the data
areas that are pointed to by the associated data pointer.

Data-Pointer Offsets: These fields contain the offsets of the data
areas. Each offset is combined with its associated data-pointer
segment to produce a pointer to the data area.

Data-Pointer Segments: These fields contain the segments of the
data areas. Each segment is combined with its associated
data-pointer offset to produce a pointer to the data area.

Data-Pointer Count: This field contains the number of data pointers.

If the Function-Transfer-Table Pointer field and the Device-Block
Pointer field are both set to hex 0:0 after ABIOS initialization, the
associated logical ID is disregarded by the operating system as a null
common-data-area entry. The entry is used as a temporary
placeholder during initialization for ABIOS extendibility. For more
information, refer to Section 5, “Additional Information.”

2-6 Data Structures—September 1991

Function Transfer Table

ABIOS entry points are stored in vector tables, called function
transfer tables. These tables contain the doubleword address pointer
for each ABIOS function. Reserved function pointers are initialized to
hex 0:0. Each logical ID (entry in the common data area) has a
function-transfer-table pointer. Multiple logical IDs can have
function-transfer-table pointers that point to the same function

transfer table.

The following figure shows a function transfer table and its
relationship to the common data area.

Request Block

L]
Logical ID

{ Anchor Pointer

- Common Data Area

Data Pointers Offset
Number of Logical IDs
[)

> Device Block Pointer

- Data Pointer
[]

Device Block

Device Data

Function Transfer Table Pointer .

—————>‘ Device Memory

- Function Transfer Table

Function 1 Pointer

Function 2 Pointer

Function 3 Pointer
[]

ABIOS Functions

L]

» Function 1
» Function 2
Function 3

Figure 2-3. Flow of Function Transfer Table

Data Structures—September 1991

2-7

The operating system builds a request block, including the logical 1D,
which defines the device, and the function. Based on the information
in the request block, the function-transfer-table pointer and
device-block pointer can be located in the common data area for the
requested device. The operating system uses the
function-transfer-table pointer to start requests, process interrupts,
and handle any time-outs that occur. Each pointer in the function
transfer table is a doubleword pointer to a Function routine.

The following figure shows the format of the function transfer table.

Size Offset Description

DWord 00H Start-routine pointer
DWord 04H Interrupt-routine pointer
DWord 08H Time-Out routine pointer
Word OCH Function count

Word OEH Reserved

DWword 10H Function 1 routine pointer
DWord 14H Function 2 routine pointer

DWord (4xn)+0CH Function n routine pointer

n=the number of functions

Figure 2-4. Function Transfer Table
The function-transfer-table entries are:

Start-Routine Pointer: The Start-routine pointer is a doubleword
pointer. it is called (using Call Far Indirect) to start a request. This
routine validates the Function field, the Request-Block Length field,
and the Unit field. All registers are saved and restored across a call
to this routine.

Interrupt-Routine Pointer: The Interrupt-routine pointer is a
doubleword pointer. It is called (using Call Far Indirect) to resume a
multistaged request upon indication from the hardware. All
multistaged requests are resumed through this routine if the
operation is not complete. All registers are saved and restored
across a call to this routine. If this function transfer table
corresponds to a device that does not interrupt, the Interrupt-Routine
Pointer field is initialized to hex 0:0.

2-8 Data Structures—September 1991

Time-Out Routine Pointer: The Time-Out routine pointer is a
doubteword pointer. It is called (using Call Far Indirect) to terminate
a request that fails to receive a hardware interrupt within a specified
length of time. This routine terminates the request and leaves the
hardware controller in a known, initial state. All registers are saved
and restored across a call to this routine. If this function transfer
table corresponds to a device that does not interrupt, or to a device
that interrupts but never times out, the Time-Out Routine Pointer field
is initialized to hex 0:0.

Function Count: This is a word count of the number of functions that
are supported by a device.

Reserved: This is a reserved word (allocated regardless of whether
the value of the Function Count field is 0).

Function 1 Pointer: This is a doubleword pointer to the Function 1
routine.

Function 2 Pointer: This is a doubleword pointer to the Function 2
routine.

Function n Pointer: This is a doubleword pointer to the Function n
routine.

For more information, see “Functional Parameters” on page 4-5.

Device Block

ABIOS routines require a permanent work area, called a device
block, for each device. Hardware port addresses, interrupt levels,
and device-status information are stored in a device block.

The device block contains both public and private data. The public
data in the device block is a readable area whose format is common
across all device blocks. The operating system must not alter this
area. Private data in the device block is used internally by ABIOS.
Its format and content are not necessarily identical in all
implementations of ABIOS. The operating system must not examine
or alter private data, and IBM reserves the right to alter the contents
of the private portion of the device block.

Data Structures—September 1981 2-9

Request Block

L]
Logical 1D

The foliowing figure shows a device block and its relationship to the
common data area.

{ Anchor Pointer

Common Data Area

Data Pointers Offset

Number of Logical IDs
L]

Device Block Pointer

Function Transfer Table Pointer
[]

Data Pointer

Device Block

Device Data

————’[Device Memory

Function Transfer Table

ABIOS Functions

Function 1 Pointer

Function 2 Pointer

Function 3 Pointer
L 4

Function 1

» Function 2

» Function 3
[]

Figure 2-5. Flow of Device Block

2-10 Data Structures—September 1991

Every ABIOS device has an associated device block. The
device-block format is shown in the following figure.
Slze Ofiset Description Access
Word 00H Device-block length Public read
Byte 02H Revision Public read
Byte 03H Secondary device |D Public read
Word 04H Logical ID Public read
Word 06H Device ID Public read
Word 08H Count of logical-ID exclusive-port pairs Public read
Word 0AH Count of logical-ID common-port pairs Public read
DWord ? Logical-ID exclusive-port pairs 0 Public read
DwWord ? Logical-ID exclusive-port pairs 1 Public read
DWord 7 Logical-1D exclusive-port pairs n Public read
Dword ? Logical-ID common-port pairs 0 Public read
DWord ? Logical-ID common-port pairs 1 Public read
DWord 7 Logical-ID common-port pairs n Public read
Word ? Device-unique data-area length Private
? ? Device-unique data area Private
Word ? Count of units Private
Word ? Unit-unique data-area length Private
? ? Unit-unique data area Private

?=placehoider for variable values
n=the number of port pairs

Figure 2-6. Device Block

The device-block entries are:

Device-Block Length: This field is one word long, and it contains the
number of bytes that are in the device block, including the
Device-Block Length field. The maximum specifiable length is 64KB
minus 1 byte. The required device-block size for a particular device
is returned during ABIOS initialization.

Data Structures—September 1991 2-11

Revision: This byte indicates the level of the supporting code for a
device. The initial value of the base level is 0. The value of the
Revision field is increased by 1 for each succeeding version of ABIOS
code for a particular device ID and secondary device ID (that is, when
a new level of ABIOS code is developed for existing hardware).

Secondary Device ID: This byte indicates the level of hardware that
an ABIOS implementation supports. The initial value of the base
level is 0. The value of the Secondary Device ID field is increased by
1 when a new level of code is developed for a previously-defined
device ID that supports new hardware. When the value of the
Secondary Device ID field is increased, the Revision field is reset to
0.

Logical ID: This field indicates the logical name of the device that is
associated with a device block. It is analogous to the
software-interrupt number that BIOS uses to access different device
types. Logical ID values are determined dynamically during ABIOS
initialization; the logical ID for a given device is determined by the
index of its entry in the common data area.

To facilitate the patching of common internal ABIOS functions, the
operating system must reserve a number of logical IDs to enable
ABIOS to call these common internal ABIOS functions. They are
identified to the operating system during ABIOS initialization. The
logical-ID values are shown in the following figure.

Logical ID Usage

00H Reserved

01H Reserved

02H to nH ABIOS internal calls

>n System and adapter devices
n=the last logical ID reserved for ABIOS internal calls

Figure 2-7. Logical ID Values
Device ID: This field indicates the type of device that is addressed by

a function request and the ABIOS function level that is supported.
The assigned values of this field are shown in the following figure.

2-12 Data Structures—September 1991

Device ID Device

00H ABIOS Internal Calls

01H Diskette

02H Disk

03H Video

04H Keyboard

05H Parallel Port

06H Asynchronous Communication
07H System Timer

08H Real-Time Clock Timer

09H System Services

0AH Nonmaskable Interrupt

0BH Pointing Device

OCH Reserved

ODH Reserved

OEH Nonvolatile Random Access Memory (NVRAM)
OFH Direct Memory Access (DMA)
10H Programmable Option Select (POS)
11H to 15H Reserved

16H Keyboard Security

17H SCSI Subsystem Interface

18H SCSi Peripheral

19H to FFFFH Reserved

Figure 2-8. Device ID Values

Device ID hex 00 is reserved for ABIOS internal calls (an ABIOS
function calling another ABIOS function). Each of the other device-ID
values denotes a type of device and a level of ABIOS support, as
described in the “Interfaces” section.

Count of Logical-ID Exclusive-Port Pairs: This is the number of
logical-ID exclusive-port pairs. A logical-ID exclusive port is a port
that is used exclusively by a particular logical ID. Examples are the
diskette ports, disk ports, asynchronous communication ports,
parallel ports, and video ports. If the value of the Count of Logical-ID
Exclusive-Port Pairs field is 0, no space is allocated for the Logical-1D
Exclusive-Port Pairs fields.

Count of Logical-ID Common-Port Pairs: This is the number of
logical-ID common-port pairs. Logical-ID common ports are ports
that are shared across more than one logical-ID value. Examples are
the DMA-controlier ports, keyboard-controller ports, and NVRAM
ports. Each logical ID that uses one of these ports contains an entry
in the Logical-ID Common-Port Pairs fields of the device block. If the
value of this field is 0, no space is allocated for the Logical-ID
Common-Port Pairs fields.

Data Structures—September 1991 2-13

Logical-ID Exclusive-Port Pairs: These are the logical-ID
exclusive-port pairs. The first word of the doubleword is the starting
1/0-port number of a range of I/0-port numbers. The second word is
the ending I/0-port number of the range.

Logical-ID Common-Port Pairs: These are the logical-ID
common-port pairs. The first word of the doubleword is the starting
i/O-port number of a range of I/0-port numbers. The second word is
the ending 1/0-port number of the range.

Note: Every port that an ABIOS logical ID reads from or writes to is
contained in either the Logical-ID Exclusive-Port Pairs fields or
the Logical-ID Common-Port Pairs fields.

Device-Unique Data-Area Length: This field contains the length, in
bytes, of the device-unique data area for the specified device.

Device-Unique Data Area: This field contains data that is unique to a
device. Parameters that describe the device and working data that
span the device ID are kept in this area. This area contains private
data for ABIOS; its content and format might change. Examples of
the data that is kept in this area are interrupt level, arbitration level,
and device status.

Count of Units: This field contains the number of unit-unique data
areas in the device block. If the value of this field is 0, the Count of
Units field is the last field in the device block.

Unit-Unique Data-Area Length: This field contains the length, in
bytes, of a single entry in the repeatable unit-unique data area,
excluding the Unit-Unique Data-Area Length field. This field exists
only when the value of the Count of Units field is greater than 0.

Unit-Unique Data Area: This field is a private area that is repeatable
for each unit of the specified device ID. For example, if the device ID
value is hex 01 (diskette), a particular diskette drive is considered a
unit. Parameters that describe the unit and working data that span
individual requests are kept in this area. This area contains private
data for ABIOS; its content and format might change. This field exists
only when the value of the Count of Units field is greater than 0.

2-14 Data Structures—September 1991

