
Graphics Library Programming Guide 4-1

Chapter 4

4. Display and Color Modes

This chapter describes how colors are displayed, from a hardware and
software perspective. It tells you how to use the color modes to control the way
color is handled and how to set the current color for drawing.

• Section 4.1, “Color Display,” describes how monitors display color,
then focuses on some details of the color display implementation.

• Section 4.2, “RGB Mode,” tells you how to use RGBmode, a color mode
that lets you work with the red, green, and blue components of color.

• Section 4.3, “Gouraud Shading,”tells you how to use Gouraud shading,
which allows you to draw smoothly shaded figures.

• Section 4.4, “Color Map Mode,” tells you how to use color maps.

• Section 4.5, “Onemap and Multimap Modes,” tells you how to use
alternate mapping modes.

• Section 4.6, “Gamma Correction,” tells you how to alter the colors your
monitor displays and how to correct for display variations among
different monitors.

4-2 Display and Color Modes

4.1 Color Display

If you have a standard monitor, it has three color guns that sweep out the entire
screen area 60 to 76 times per second. During this sweep, each gun points
directly at each of the pixels for a very short time. The color guns shoot out
electrons that strike the screen and cause it to glow.

Each pixel on the screen is composed of three different phosphors that glow red,
green, or blue. One color gun activates only the red phosphors, one only the
green, and the third only the blue. As each color gun sweeps across the pixels,
the number of electrons shot out (the intensity) is modified on a pixel-by-pixel
basis.

If no electrons are fired at a pixel, its phosphors do not glow at all, and it
appears black. For example, consider the red color gun. If the gun is turned on
to its highest intensity, the phosphor glows bright red. At intermediate
intensities, the colors vary between the two—from black to bright red. The
same is true for the other guns, except that the colors vary from black to bright
green, or from black to bright blue.

The color your eye perceives at a pixel is the combination of all three colors.
Different combinations of intensity settings of the guns generate a wide variety
of colors.

Each color gun can be set to 256 different intensity levels, ranging from
completely off to completely on. Setting 0 is completely off, and setting 255 is
completely on. The intensities of the red, green, and blue guns at the pixel
determine its color. This is expressed as an RGB triple: three numbers between
0 and 255 indicating the red, green, and blue intensity, in that order.

Black is represented by (0,0,0), bright red by (255,0,0), bright green by (0,255,0),
and so on. A few other examples include: (255,255,0) = yellow, (0,255,255) =
cyan, (255,0,255) = magenta, (255,255,255) = white. The colors represented by
(0,0,0), (1,1,1), (2,2,2),..., (255,255,255) are different shades of gray ranging from
black to white. Because each gun has 256 different settings, there are
256x256x256 = 16777216 different colors available.

Note: For a more detailed discussion of color, see J.D. Foley and V. Van Dam,
Computer Graphics: Principles and Practice, Addison-Wesley, 1990. Also,
the first example in Section 4.2 allows you to experiment with the
correspondence between RGB triples and perceived colors.

Graphics Library Programming Guide 4-3

4.1.1 Bitplanes

The framebuffer is organized as a set of bitplanes. Each bitplane contains
exactly one bit of information for each pixel on the screen. The number of
bitplanes varies from system to system.

Table 4-1 shows the bitplane configurations possible for different systems. C
stands for color map mode; X means that the configuration is not supported.

These bits store color information, depth information, described in Chapter 8,
overlays and underlays, described in Chapter 11, and, on systems with alpha
planes, an alpha channel, described in Chapter 15.

The number of bits per pixel also depends on the color mode, RGB, colormap,
or multimap, described later in this chapter; and on the drawing mode,
normal, underlay, overlay, described in Chapter 11.

RealityEngine systems feature a flexible framebuffer configuration that gives
you different pixel depths in different situations. See Chapter 15 for more
information about the RealityEngine framebuffers.

Use getgdesc() with the GD_BITS group of inquiry parameters to determine
exact bit availability. See the getgdesc(3G) man page for details on the inquiry
parameters.

Color Mode
IRIS
Indigo Personal IRIS/G

GTB
GTXB
VGXB
XS24
Elan

GT/GTX
VGX/VGXT
SkyWriter

Reality
Engine

RGB 8 8 12 24 24 32 32/48

RGB doublebuffer 4 X X 12 24 32 32/48

Colormap 8 8 12 12 12 12 12

Colormap doublebuffer 4 4 8 12 12 12 12

Colormap multimap 8 8 8 8 8 8 8

C-multimap-double 4 4 8 8 8 8 8

Table 4-1 Bitplane Configurations of Silicon Graphics Workstations

4-4 Display and Color Modes

The creation of graphics includes two basic steps. First, the drawing
subroutines write data into the bitplanes. Second, the display hardware
interprets that data as colors on the screen. GL subroutines control both the
patterns of zeros and ones that are written into the bitplanes of each pixel and
the interpretation of those patterns as colors on the screen.

4.1.2 Dithering

The Personal IRIS and IRIS Indigo have less bitplanes per R, G, and B
component than other IRIS systems, yet can still display a wide range of colors.

These systems use dithering to expand the range of displayed colors. Dithering
is a pixel operation that attempts to convey the color of an image as accurately
as possible when the framebuffer stores fewer bits of a color than the system
calculates. Dithering creates a dot pattern of different colors from the colors
available that looks like an accurately shaded image when viewed from a
distance.

Dithering works on all drawing primitives: points, lines, text, polygons, and
pixel write and copy operations. Dithering is enabled by default and works in
both RGB mode and color map mode. In RGB mode, dithering is performed
independently for each red, green, blue (and alpha) component.

Turn dithering on, which is the default on systems that support dithering, by
calling dither(DT_ON) . Call dither(DT_OFF) to turn dithering off.

It is probably best to turn dithering off when drawing pre-dithered images, or
when drawing single-width RGB lines on an eight or four bit framebuffer.

You can enable dithering on the Personal IRIS only when drawing in one of
these modes: shademodel(GOURAUD) or depthcue(TRUE) .

Note: Some systems do not support dithering. Use getgdesc(GD_DITHER)

to determine whether or not dithering is supported. If
getgdesc(GD_CIFRACT) is FALSE, then dithering is only supported in
RGB mode; it is not supported in color map mode.

Graphics Library Programming Guide 4-5

4.2 RGB Mode

RGB mode specifies colors in terms of their components: red, green, blue, and
alpha. The number of bits per component depends upon the system type.

Note: Regardless of the actual number of bits-per-pixel stored in the
framebuffer, the GL allows you to treat the hardware as though it
stores 24 bits per pixel. It does this by storing the most significant bits
(MSBs) of the color components presented to it. This R, G, and B data
can be treated as 8-bit values (0-255) by GL programs.

Some precision is lost in the RGB value by not having the other bits,
but 2 bits of red data is still red, just not as precise as a shade of red
described by 8 bits.

RealityEngine systems may compute and store 12 bits per color
component and dither them into 10 bits when displaying.

The sample programs you have seen in the previous chapters take only a
single color argument, for example, BLACK or GREEN. This is the default,
color map mode, which is discussed later in this chapter.

Set the color mode to RGB mode with RGBmode() before you call any
subroutines that require RGBmode. Call gconfig() to enable the mode
change before you call any subroutines that use RGB data. You only need to
call RGBmode() once, because the mode remains the same until you change it.

The following sample program, draws 64 squares in RGB mode and shows
some of the colors possible. Each square is labeled with its RGB triple below it.

#include <stdio.h>
#include <gl/gl.h>

#define R 0
#define G 1
#define B 2
#define RGB 3
#define XSPACING120 /* strwidth(" 255 255 255 ") */
#define SIZE 50
#define SEP 30
#define YSPACING(SIZE + SEP)

short whitevec[RGB] = {255, 255, 255};
short blackvec[RGB] = {0, 0, 0};
main()

4-6 Display and Color Modes

{
int i, j, k;
Icoord majorx, majory;
long xoff, yoff;
char str[20];
short rgbvec[RGB];
if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available on this machine\n");
return 1;
}
prefsize(8*XSPACING + SEP, 8*YSPACING + SEP);
winopen("rgbdemo");
RGBmode();
gconfig();
c3s(blackvec);
clear();
yoff = getheight();
for (i = 0; i < 4; i++) {

rgbvec[R] = i*255/3;
if (i < 2)

majory = SEP;
else

majory = SEP + YSPACING*4;
if (i == 0 || i == 2)

majorx = SEP;
else

majorx = SEP + XSPACING*4;
for (j = 0; j < 4; j++) {

rgbvec[G] = j*255/3;
for (k = 0; k < 4; k++) {

rgbvec[B] = k*255/3;
c3s(rgbvec);
sboxfi(majorx + XSPACING*j, majory + YSPACING*k,
majorx + XSPACING*j + SIZE, majory + YSPACING*k + SIZE);
c3s(whitevec);
sprintf(str, "%d %d %d", rgbvec[R], rgbvec[G], rgbvec[B]);
xoff = (strwidth(str) - SIZE)/2;
cmov2i(majorx + XSPACING*j - xoff,

majory + YSPACING*k - yoff);
charstr(str);

}
}

}
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 4-7

The c3s() subroutine sets the color to the RGB triple specified by blackvec,
which is initialized to contain zeros for the red, green, and blue components.
The first location is the red component, the second is the green, and the third
is the blue component. In the four-component case, the fourth component is
called the alpha value, which is described in Chapter 15. For this example, set
the fourth component to 255 (1.0 for floating point data).

Each color is then built up to contain the requisite red, green, and blue
components, then filled rectangles are drawn in that color.

The sprintf command is a standard C library routine that is used here to create
an ASCII string representation of the three values of red, green, and blue.

4.2.1 Setting and Getting the Current Color in RGB Mode

Like the vertex subroutines described in Chapter 2, the c() subroutines that
set the current color in RGB mode have different forms depending on their
data type.

Table 4-2 lists the subroutines that set the RGB color.

The floating point range from 0.0 to 1.0 is mapped linearly to the range from 0
to 255, with values larger than 1.0 mapped to 255.

Note: On RealityEngine systems, colors are mapped to the range 0 to 4095.

You can also specify RGB component with cpack() . cpack() takes a single
32-bit argument that contains the packed 8-bit values of the red, green, blue,
and alpha components. The red component is the low order 8 bits, green is
next, then blue, and alpha is the high order bits. For example,
cpack(0x01020304) sets the red, green, blue, and alpha components to 4, 3, 2,
and 1, respectively.

Argument Type RGB RGBA

16-bit integer c3s() c4s()

32-bit integer c3i() c4i()

32-bit floating point c3f() c4f()

Table 4-2 The Color (c) Family of Subroutines

4-8 Display and Color Modes

Use gRGBcolor() to get the current RGB values while in RGB mode.

The old-style subroutine RGBcolor() was used to set the RGB color in early
versions of the software. RGBcolor() is supported for compatibility only; it is
recommended that you use the c3i() , c3s() , c3f() , or cpack() subroutines.

This sample program, RGBcolor.c, demonstrates how to use RGBcolor() :

#include <stdio.h>
#include <gl/gl.h>

main()
{

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available on this machine\n");
return 1;
}
prefsize(400, 400);
winopen("RGBcolor");
RGBmode();
gconfig();
RGBcolor(0, 100, 200);
clear();
sleep(10);
gexit();
return 0;

}

4.3 Gouraud Shading

In the examples presented thus far, all lines and polygons are drawn in a
uniform color—every pixel in the line or polygon has the same color.
Uniformly colored polygons are called flat-shaded polygons. If the geometry
you are drawing has only flat (polygonal) faces, this might be the way it should
look; however, in many cases, polygonal faces are used to approximate a
smooth curved surface. If the true surface is curved, colors tend to vary in a
continuous way across the surface. A flat-shaded polygonal approximation to
the surface has a tiled look.

One way to improve the appearance of an approximated polygonal surface is
to use a large number of smaller polygons in the approximation. An easier way
is to shade or vary the color across the polygons. This is called Gouraud shading.

Graphics Library Programming Guide 4-9

It is possible to calculate the correct color for the true surface at each vertex of
the approximating polygon, and the graphics hardware shades the polygon
based on those values. (You can also shade polygons using lighting models,
positions and colors of lights, and surface properties, as described in Chapter
9.) Lighting models calculate the colors only at polygon vertices, and the
resulting shading is the same whether you or the lighting model hardware
calculate the vertex colors.

Note: The graphics hardware on every IRIS model, except the G series and
Personal IRIS, performs rapid Gouraud shading of polygons. On these
machines, you can use the shademodel() subroutine to improve
performance when Gouraud shading is not required. Flat shading
provides the fastest possible shading on these systems. Gouraud
shading is the default, so you must use shademodel(FLAT) to disable
Gouraud shading of polygons. Calling shademodel(GOURAUD)

restores Gouraud shading. Use getsm() to return the current value of
shademodel.

For Gouraud-shaded polygons, the system linearly interpolates—that is, it
averages the color values for each edge, assuming a constant variation
between the RGB colors at the two vertices that delimit that edge. Next, it
interpolates these colors from edge to edge across the interior of the polygon.
The result is a smooth color variation across the entire polygon.

For Gouraud-shaded lines, the system uses the same process, except that only
the first step—interpolating the color between the endpoints—is required.

The interpolation is linear in all three components.

4-10 Display and Color Modes

Figure 4-1 shows the result of Gouraud shading a triangle whose vertices have
colors (0,20,100), (75,60,50), and (0,0,0).

Figure 4-1 Gouraud Shaded Triangle

Look at the left edge of the triangle, where the color goes from (0,20,100) at one
end to (75,60,50) at the other. The six pixels are colored (0,20,100), (15,28,90),
(30,36,80), (45,44,70), (60,52,60), and (75,60,50). Each of the color components
changes smoothly from one pixel to the next. The red component increases by
15 each time, the green component increases by 8, and the blue component
decreases by 10 for each pixel. In this case, the pixel color differences happen
to work out nicely to whole numbers. Usually this is not the case, but the
approximation is done as accurately as possible.

After the colors of the pixels on the edges of the polygon are determined, the
same process is used to interpolate the colors of the pixels on the interior.

(0,20,100)

(15,28,90)

(30,36,80)

(45,44,70)

(60,52,60)

(75,60,50)

(0,16,80)

(15,24,70)

(30,32,60)

(45,40,50)

(60,48,40)

(0,12,60)

(15,20,50)

(30,28,40)

(45,36,30)

(0,8,40)

(15,16,30)

(30,24,20)

(0,4,20)

(15,12,10) (0,0,0)

Graphics Library Programming Guide 4-11

The following sample program, shadedtri.c, draws a large Gouraud shaded
triangle whose vertices are bright red, bright green, and bright blue.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

float blackvect[3] = {0.0, 0.0, 0.0};
float redvect[3] = {1.0, 0.0, 0.0};
float greenvect[3] = {0.0, 1.0, 0.0};
float bluevect[3] = {0.0, 0.0, 1.0};

long triangle[3][2] = {
{ 20, 20},
{ 20, 380},
{380, 20}

};

main()
{

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available\n");
return 1;
}
prefsize(400, 400);
winopen("shadedtri");
RGBmode();
gconfig();

c3f(blackvect);
clear();
bgnpolygon();

c3f(redvect);
v2i(triangle[0]);
c3f(greenvect);
v2i(triangle[1]);
c3f(bluevect);
v2i(triangle[2]);

endpolygon();
sleep(10);
gexit();
return 0;

}

When you run this program, notice how the colors change smoothly along
each edge, and across the interior of the triangle. You can modify the colors at

4-12 Display and Color Modes

the triangle’s vertices to see how they affect the picture. Typically, polygons do
not have wildly different colors at their vertices as the example does.

To shade a polygon with Gouraud shading, you set the color before each
vertex. To shade a polyline, do the same thing—set the color before each vertex
between bgnline() and endline() .

Note: You cannot change the color of a polyline on IRIS G series systems.

The next sample program, cylinder.c, implements a simple lighting model in
user code and uses it to draw a cylinder. You normally would not program
your own lighting calculations, you would take advantage of the built-in
lighting facility of the IRIS GL.

#include <stdio.h>
#include <math.h>
#include <gl/gl.h>

#define X 0
#define Y 1
#define Z 2
#define XYZ 3
#define R 0
#define G 1
#define B 2
#define RGB 3

#define RADIUS .9
#define MAX(x,y) (((x) > (y)) ? (x) : (y))

float blackvec[RGB] = {0.0, 0.0, 0.0};
float lightpos[XYZ] = {3.0, 0.0, 1.2};
float dot(), dist2();

main()
{

int i, nperside;
float p[4][XYZ];
float n[4][XYZ];
float c[4][RGB];
float x, dx;
float theta, dtheta;
float comp;

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available on this machine\n");

Graphics Library Programming Guide 4-13

return 1;
}
prefsize(400, 400);
winopen("cylinder");
RGBmode();
gconfig();
ortho2(-1.5, 1.5, -1.5, 1.5);
c3f(blackvec);
clear();

for (nperside = 1; nperside < 10; nperside++) {
dx = 3.0 / nperside;
dtheta = M_PI / nperside;
for (x = -1.5; x < 1.5; x = x + dx) {

for (theta = 0.0; theta < M_PI; theta += dtheta) {
p[0][X] = p[1][X] = x;
p[0][Y] = p[3][Y] = RADIUS * fcos(theta);
p[0][Z] = p[3][Z] = RADIUS * fsin(theta);
p[2][X] = p[3][X] = x + dx;
p[1][Y] = p[2][Y] = RADIUS * fcos(theta + dtheta);
p[1][Z] = p[2][Z] = RADIUS * fsin(theta + dtheta);
for (i = 0; i < 4; i++) {

n[i][X] = 0.0;
n[i][Y] = p[i][Y] / RADIUS;
n[i][Z] = p[i][Z] / RADIUS;

}

for (i = 0; i < 4; i++) {
comp = dot(lightpos, n[i])/(0.5 + dist2(lightpos, p[i]));
c[i][R] = c[i][G] = c[i][B] = MAX(comp, 0.0);

}

bgnpolygon();
for (i = 0; i < 4; i++) {

c3f(c[i]);
v3f(p[i]);

}
endpolygon();

}
}
sleep(5);

}
sleep(10);
gexit();
return 0;

}

4-14 Display and Color Modes

/* dot: find the dot product of two vectors */
float dot(v1, v2)
float v1[XYZ], v2[XYZ];
{

return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

/* dist2: find the square of the distance between two points */
float dist2(v1, v2)
float v1[XYZ], v2[XYZ];
{

return (v1[0] - v2[0])*(v1[0] - v2[0]) +
(v1[1] - v2[1])*(v1[1] - v2[1]) +
(v1[2] - v2[2])*(v1[2] - v2[2]);

}

Although this program looks complicated, it is simple for a program that does
its own lighting calculations. The program approximates a half cylinder by a
set of n×n rectangles whose vertices lie on the surface of the cylinder.

The equation for the cylinder is y2 + z2 = R 2, where y and z are parameterized
by θ: y = cos(θ), z = sin(θ), 0 ≤ θ ≤ π, and -1.5 ≤ x ≤ 1.5. Because you fix your
eye above the middle of the cylinder, there is no need to draw the bottom half.
Given x and θ, you can define a point on the surface as: (x, Rcos(q), Rsin(q)). At
that point, the normal vector is (0, cos(q), sin(q)).

Assume that the cylinder is in a completely black room whose walls reflect no
light, and there is a single point light source at (3.0, 0.0, 1.2), near the right end
and above the center of the cylinder. Your eye is directly above the center of the
cylinder and is looking straight down on it. This position is set by ortho2() in
the example.

The cylinder is uniformly white, so you see only the colors between white and
black, that is, only shades of gray where the red, green, and blue components
of the light are equal. This model assumes that the amount of light reaching
your eyes from a point on the cylinder depends on the distance of the light
source to the point on the cylinder, and on the angle it makes with the
cylinder’s surface. The larger the angle, the less light is reflected. If the angle is
more than 90 degrees, assume the color is black. The angular dependence is
given by the dot product of the light direction with the cylinder’s normal
vector, and that is attenuated by a factor of 1.0/(.5 + dist2). This is not a realistic
model, but it serves for this example. See Chapter 9 to learn how to use the
built-in lighting models.

Graphics Library Programming Guide 4-15

As written, the program loops on n, approximating the cylinder half first with
one polygon, then 4, 9, 16, 25,... 100 polygons. Each view is presented for five
seconds before the next one is drawn. The first view is completely black,
because the normal vectors are all perpendicular to the light vector, so each
corner is colored black. As the number of approximating polygons increases,
the representation gets better, and the last two or three images are similar.

The points p0, p1, p2, and p3 are the vertices of each of the approximating
rectangles, n0...n3 are the corresponding normal vectors, and c0... c4 are the
colors calculated at the points.

You can modify the program above to use different light vector positions or
different lighting models. You can also modify it to draw flat shaded polygons,
perhaps based on the normal vector at the center, to compare with the
Gouraud shaded version. To get comparable pictures, many more polygons
would have to be drawn.

4.4 Color Map Mode

In RGB mode, the values in the bitplanes correspond exactly to the color to be
presented. Another way to write and interpret the data in the bitplanes is by
using color map mode, also called color index mode. Many applications are better
suited to color map mode than to RGB mode, and many of the principles of
color maps are used in the overlay, underlay, and pop-up drawing modes.

Color map mode provides a level of indirection between the values stored in
the bitplanes and the RGB values displayed on the screen. This mode is useful
on systems that do not have enough bitplanes for RGB mode, and for blinking
and other applications where you want quick color map changes.

In color map mode, the zeros and ones stored in the standard bitplanes (up to
12 bits) are interpreted as a binary number and used as an index into a color
map. Each entry in the color map consists of a full 8 bits each of red, green, and
blue intensity. To figure out what color to present at a pixel on the screen, take
the 12 bits out of the bitplanes, interpret them as a binary number between 0
and 4095, and look up the color map values for red, green, and blue for that
number. That red, green, and blue triple is the pixel color.

4-16 Display and Color Modes

By default, the system is in color map mode, and the lowest eight values in the
color map are loaded as shown in Table 4-3:

For example, the call

color(GREEN);

actually sets the current color to 2, so every drawing subroutine (lines, points,
polygons, or characters) puts the value 2 in the affected bitplanes. Because the
display is in color map mode, pixel values of 2 are looked up in the color map,
and the RGB triple (0,255,0) = bright green is presented.

These color map entries or any other color map entries can be changed.
Because there is only one color map used by all GL polygons, whenever you
modify the map, it is modified for all the other GL applications running in
different windows. However, applications running in RGB mode, and non-GL
applications such as X applications, are not affected.

To enter color map mode, call cmode() followed by gconfig() . The system is
in color map mode by default, so you need only call cmode() if the system is
currently in RGB mode.

To change color map entries, use mapcolor() . mapcolor() takes four
arguments: an index into the color map, and the red, green, and blue
components to load into the map for that index. The index is between 0 and the

 Location Red Green Blue Color

0 0 0 0 BLACK

1 255 0 0 RED

2 0 255 0 GREEN

3 255 255 0 YELLOW

4 0 0 255 BLUE

5 255 0 255 MAGENTA

6 0 255 255 CYAN

7 255 255 255 WHITE

Table 4-3 Default Color Map

Graphics Library Programming Guide 4-17

system’s limit, and the red, green, and blue components are integers between
0 and 255.

The calling sequence is:

mapcolor(index, red, green, blue);

Multimap mode has only 256 map entries. See Section 4.5, “Onemap and
Multimap Modes.”

4.4.1 Setting the Current Color in Color Map Mode

The color() and colorf() statements set the color index in the current draw
mode of the active framebuffer. The framebuffer must be in color map mode
for color() to work. Because most drawing commands copy the current color
index into the color bitplanes of the current framebuffer, the system retains the
value of color() for each framebuffer when you exit and reenter a particular
draw mode.

color() takes a single argument, c, which represents a color index. c can have
a value between 1 and 2n−1, where n is the number of bitplanes available in the
current draw mode. Color indices larger than 2n−1 are clamped to 2n−1; color
indices smaller than 0 yield undefined results.

colorf() is identical to color, except that it uses a floating point value. Before
the value is written into memory, however, it is rounded to the nearest integer
value. The results of color() and colorf() are indistinguishable when using
shademodel(FLAT).

If you are using Gouraud shading, systems that iterate color indices with
fractional precision yield more precise shading results with colorf() than
with color() . Not all systems iterate with fractional precision. To determine
whether your system supports fractional iteration, use
getgdesc(GD_CIFRACT) .

Note: Do not call color() or colorf() when the framebuffer is in RGB
mode.

4-18 Display and Color Modes

This sample program, pink-n-gray.c, draws a gray rectangle around a pink
circle. Here GRAY and PINK are indices into the color map. They are chosen
to be larger than 63 so as not to conflict with the color map entries used by the
window system. Note that the predefined color BLACK is used to clear the
window.

#include <gl/gl.h>

#define GRAY 64
#define PINK 65

main()
{
 prefsize(400, 400);
 winopen("pink-n-gray");
 mapcolor(GRAY, 150, 150, 150);
 mapcolor(PINK, 255, 80, 80);
 color(BLACK);
 clear();
 color(GRAY);
 sboxi(150, 150, 250, 250);
 color(PINK);
 circi(200, 200, 50);
 sleep(10);
 gexit();
 return 0;
}

4.4.2 Getting Color Information in Color Map Mode

The GL provides two subroutines to get color information in color map mode:
getcolor() , and getmcolor() . In most cases, getcolor() simply returns the
most recently set color o; however, when using the fast update facility of the
automatic lighting models, the system can change the current color as a result
of lighting calculations (see the lmcolor() command, described in Chapter 9).

getcolor() returns the current color for the current drawing mode. It returns
the index into the color map set by color. The result of getcolor() is
undefined in RGB mode. Use getcolor() only in color map mode.

getmcolor() returns the setting of the color map for a given index.
getmcolor() returns the red, green, and blue components of a color map entry
for a given index into the color map.

Graphics Library Programming Guide 4-19

4.4.3 Gouraud Shading in Color Map Mode

Gouraud shading works in color map mode, but it is more difficult to use than
in RGB mode. The colors at the vertices of lines or polygons are interpolated to
the interior points, but only the color map index is interpolated, not the red,
green, and blue components. Thus, a shaded 6-pixel line whose endpoints are
colored 1 (red) and 6 (cyan) has its six pixels colored 1, 2, 3, 4, 5, 6 (red, green,
yellow, blue, magenta, cyan, respectively), assuming that the default color
map is used. To shade in color map mode, you must first load a portion of the
color map with a color ramp to use as gradient between the end colors.

The following sample program, rampshade.c, draws a Gouraud shaded
polygon in color map mode.

#include <gl/gl.h>

#define RAMPBASE 64 /* avoid the first 64 colors */
#define RAMPSIZE 128
#define RAMPSTEP (255 / (RAMPSIZE-1))
#define RAMPCOLOR(fract) \

((Colorindex)((fract)*(RAMPSIZE-1) + 0.5) + RAMPBASE)

float v[4][3] = {
{50.0, 50.0, 0.0},
{200.0, 50.0, 0.0},
{250.0, 250.0, 0.0},
{50.0, 200.0, 0.0}

};

main()
{
 int i;

prefsize(400, 400);
winopen("rampshade");
color(BLACK);
clear();

/* create a red ramp */
for (i = 0; i < RAMPSIZE; i++)

mapcolor(i + RAMPBASE, i * RAMPSTEP, 0, 0);
bgnpolygon();

color(RAMPCOLOR(0.0));
v3f(v[0]);
color(RAMPCOLOR(0.25));
v3f(v[1]);

4-20 Display and Color Modes

color(RAMPCOLOR(1.0));
v3f(v[2]);
color(RAMPCOLOR(0.5));
v3f(v[3]);

endpolygon();
sleep(10);
gexit();
return 0;

}

The next sample program, dithershade.c, is the same as the previous program,
but it uses dithering to interpolate the color shades between BLACK and RED.

#include <stdio.h>#include <gl/gl.h>

float v[4][3] = {
{50.0, 50.0, 0.0},
{200.0, 50.0, 0.0},
{250.0, 250.0, 0.0},
{50.0, 200.0, 0.0}

};

main()
{

if (getgdesc(GD_CIFRACT) == 0) {
fprintf(stderr, "Dithering not available "

"on this machine\n");
return 1;
}
prefsize(400, 400);
winopen("dithershade");
color(BLACK);
clear();
bgnpolygon();

colorf(BLACK + 0.0);
v3f(v[0]);
colorf(BLACK + 0.25);
v3f(v[1]);
colorf(BLACK + 1.0); /* = RED */
v3f(v[2]);
colorf(BLACK + 0.5);
v3f(v[3]);

endpolygon();
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 4-21

4.4.4 Blinking

Blinking is an advanced topic that can be skipped on the first reading.

The blink() subroutine changes a color map entry at a specified rate. It
specifies a blink rate (rate), a color map index (i), and red, green, and blue values.
The rate parameter indicates the number of vertical retraces (one sweep of the
screen) at which the system updates the color located at i in the current color
map. For every rate retrace, the color map entry i is remapped so that it
alternates between the new red, green, blue value and the original values.

The following sample program, blinker.c, demonstrates blinking.

#include <gl/gl.h>

#define MAXBLINKS 20 /* maximum number of blinking entries */
#define FIRSTBLINKCI 64 /* avoid the first 64 colors */

main()
{

int i;

prefsize(400, 400);
winopen("blinker");
ortho2(-0.5, 20.0*MAXBLINKS + 9.5, -0.5, 500.5);
color(BLACK);
clear();
for (i = MAXBLINKS - 1; i >= 0 ; i--) {

mapcolor(i + FIRSTBLINKCI, 255, 255, 255);
color(i + FIRSTBLINKCI);
sboxfi(i*20 + 10, 10, i*20 + 20, 490);
blink(i + 1, i + FIRSTBLINKCI, 255, 0, 0);

}
sleep(10);
blink(-1, 0, 0, 0, 0);/* stop all blinking */
gexit();
return 0;

}

You can set up to 20 colors blinking simultaneously, each at a different rate; the
20-color limit is for each system, not for each window. You can change the
blink rate by calling blink() a second time with the same i but a different rate.

To terminate blinking and restore the original color, call blink() with rate = 0
where i specifies a blinking color map entry. To terminate blinking of all colors,

4-22 Display and Color Modes

call blink() with rate = -1. When you set rate to -1, the other parameters are
ignored.

Note: Program termination does not stop the color map blinking; you must
explicitly terminate blinking when you exit the program.

4.5 Onemap and Multimap Modes

Onemap and multimap modes are an advanced topic that you can skip on the
first reading.

The default mode is onemap() ; it organizes the color map as a single map with
4096 entries (256 on some systems). When you are in color map mode and in
the default onemap mode, the value of the color bitplanes is used as an index
into the color map to determine the color displayed on the screen.

An alternative mode, multimap mode, uses only 8 bits from the bitplanes
(using 256 entries in the color map), but allows up to 16 completely
independent 256-entry color maps.

multimap() organizes the color map as 16 small maps, each with a maximum
of 256 RGB entries. Multimap mode is useful on systems with only 8 bitplanes
(or 16 in double buffer mode; see Chapter 6), but it can be used on other
systems for techniques such as color map animation.

In multimap mode, setmap() makes one of the 16 small color maps current.
All display is done using the current small map, and mapcolor() affects that
map.

You must call gconfig() to activate the onemap() or multimap() settings.

Use getcmmode() to return the current color map mode. FALSE indicates
multimap mode; TRUE indicates onemap mode.

Use getmap() to return the number (from 0 to 15) of the current color map. In
onemap mode, getmap() always returns 0.

Use cyclemap() to cycle through color maps at a specified rate. It defines a
duration (in vertical retraces), the current map, and the next map that follows
when the duration lapses.

Graphics Library Programming Guide 4-23

For example, the following routines cycle between two maps in multimap
mode, leaving map 1 on for ten vertical retraces and map 3 on for five retraces.

void cyclemap(duration, map, nextmap)
short duration, map, nextmap;
multimap();
gconfig();
cyclemap(10, 1, 3);
cyclemap(5, 3, 1);

Note: When you kill a window or attach to a new one, the maps stop cycling.

4.6 Gamma Correction

Gamma correction is an advanced topic that you can skip on the first reading.

The light output of any video display is controlled by the input voltage to the
monitor. The relationship between input voltage and the brightness of the
display is exponential rather than linear. For instance, assume that 100 percent
of a monitor’s input voltage produces 100 percent brightness. If you reduce the
voltage to 50 percent of its initial value, the monitor displays only 19 percent
of its initial brightness.

To achieve a linear response from the monitor, the system must vary the input
voltage by an exponent. The exponent is called the monitor’s gamma. Linear
response is achieved on standard IRIS-4D monitors with a gamma of 2.4. The
system uses a hardware look-up table to compensate for non-linear response.

Use gammaramp() to provide gamma correction, to equalize monitors with
different color characteristics, or to modify the color warmth of the monitor.
gammaramp() supplies another level of indirection for all color map and RGB
values. Usually, the gamma ramp map is loaded with gamma corrections, but
it can be loaded with any values. The default setting assigns a gamma
exponent of 1.7.

gammaramp() affects the entire screen and all running processes. It affects only
the display of color, not the values that are written in the bitplanes. The gamma
correction stays in effect until another call to gammaramp() is made, or until the
graphics hardware is reset.

4-24 Display and Color Modes

Note: On IRIS-4D/G systems, the gamma ramp is stored in the top 256
entries of the color map.

The following sample program, setgamma.c, takes a floating point gamma
value, calculates a standard gamma ramp, and installs it using gammaramp() .

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gl/gl.h>

main(argc, argv)
int argc;
char *argv[];
{

int i;
double val;
short tab[256];

if (argc != 2) {
fprintf(stderr, "Usage: setgamma <value>\n");
return 0;

}
val = atof(argv[1]);

noport();
winopen("setgamma");
for (i = 0; i < 256; i++)

tab[i] = 255.0 * pow(i / 255.0, 1.0 / val) + 0.5;
gammaramp(tab, tab, tab);
gexit();
return 0;

}

This program sets the same gamma ramp for red, green, and blue, although a
more general mapping is possible. In addition, this program uses the
noport() hint to the window manager in the same way that prefsize() does.
It tells the graphics that no physical screen space is required, but that the
graphics hardware will be accessed.

As a final example of the gamma ramp, this stepgamma.c program sets the
gamma ramp to a set of discrete values. For example, if the number is 3, the
highest third of the ramp is mapped to full intensity; the middle third to
middle intensity, and the lowest third to lowest intensity. It basically provides
simultaneous thresholding in red, green, and blue. If a picture is drawn

Graphics Library Programming Guide 4-25

entirely with shades of gray, this loading of the gamma ramp displays the
picture as if it were drawn with a small set of discrete gray values.

#include <stdio.h>
#include <stdlib.h>
#include <gl/gl.h>

main(argc, argv)
int argc;
char *argv[];
{

int i, nsteps;
short val;
short ramp[256];

if (argc != 2) {
fprintf(stderr, "Usage: stepgamma <numsteps>\n");
return 1;

}
nsteps = atoi(argv[1]);
if (nsteps < 2) {

fprintf(stderr, "stepgamma: <numsteps> cannot be < 2\n");
return 1;
}

noport();
winopen("stepgamma");
for (i = 0; i < 256; i++) {

val = ((nsteps * i) / 256) * 255 / (nsteps - 1);
if (val > 255)

val = 255;
ramp[i] = val;

}
gammaramp(ramp, ramp, ramp);
gexit();
return 0;

}

It is interesting to look at some shaded RGB polygons with a small number of
steps.

4-26 Display and Color Modes

