Chapter 16

Graphical Objects

This chapter describes the subroutines that you use to build hierarchies of
drawing modules so you can draw geometry that has multiple instances of the
same figure. You often want to group together a sequence of drawing
subroutines and give it an identifier. The entire sequence can then be repeated
with a single reference to the identifier rather than by repeating all the drawing
subroutines. In the Graphics Library, such sequences are called graphical
objects; in other systems they are sometimes known as display lists.

e Section 16.1, “Creating an Object,” tells you how to define the
drawing modules that create an object.

= Section 16.2, “Working with Obijects,” describes the subroutines you use
to edit objects and mark them for special operations.

16.1 Creating an Object

A graphical object is a list of graphics primitives (drawing subroutines) to
display. For example, a drawing of an automobile can be viewed as a
compilation of smaller drawings of each of its parts: windows, doors, wheels,
and so on. Each part (for example, a wheel) might be a graphical object—a
series of point() , line() , and polygon() subroutines.

To make the automobile a graphical object, you first create objects that draw its
parts—a wheel object, a door object, a body object, and so on. The automobile
object is a series of calls to the part objects, which together with appropriate
rotation, translation, and scale subroutines, put all the parts in their correct
places.

Graphics Library Programming Guide 16-1

16-2

To create a graphical object, you call makeobj() , call the same drawing
subroutines you would normally call to draw the object, and then call
closeobj() . Between the makeobj() and closeobj() calls, drawing
subroutines do not result in immediate drawing on the screen; rather, they are
compiled into the object that is being created.

Thus, a graphical object is a list of primitive drawing subroutines to be
executed. Drawing the graphical object consists of executing each routine in
the listed order. There is no flow control, such as looping, iteration, or
condition tests, except for tests that determine whether or not objects are in the
viewport, as illustrated in Figure 16-3, in Section 16.2, “Working with Objects.”

Note: Not all GL subroutines can be included within a graphical object. A
general rule is to include drawing subroutines and not to include
subroutines that return values. If you have a question about a
particular routine, see the man page for that command.

makeobj

makeobj() creates a graphical object;
void makeobj (Object obyj)

The argument obj is a 31-bit integer that is associated with the object. If obj is
the number of an existing object, the contents of that object are deleted.

When makeobj() executes, the object number is entered into a symbol table
and an empty graphical object is created. Subsequent graphics subroutines are
compiled into the graphical object instead of being executed immediately.
makeobj() creates a new object containing Graphics Library subroutines
between makeobj() and closeobij()

closeobj

closeobj() terminates the object definition and closes the open object:

void closeobj(void)

All the subroutines in the graphical object between makeobj() and
closeobj() are part of the object definition.

Graphical Objects

If you specify a numeric identifier that is already in use, the system replaces
the existing object definition with the new one. To ensure that your object’s
numeric identifier is unique, use isobj() and genobj()

Figure 16-1 shows the sphere defined as a graphical object that is created by the
following code:

Object obj;
makeobj(sphere=genobj ());
for (phi=0; phi<PlI; phi+=P1/16) {
bgnclosedline();
for(theta=0; theta<2*PI; theta+=P1/18) {
vert[0] = sin(theta) * cos(phi);
vert[1] = sin(theta) * sin(phi);
vert[2] = cos(theta);
v3f(vert);
}

endclosedline();

}

closeobj();

Figure 16-1 Sphere Defined as an Object

Graphics Library Programming Guide 16-3

16.2

16-4

isobj

isobj() tests whether there is an existing object with a given numeric
identifier. Its argument obj specifies the desired numeric identifier. isobj()
returns TRUE if an object exists with the specified numeric identifier and
FALSE if none exists.

genobj

genobj() generates a unique numeric identifier:

Object genobj(void)

genobj() is useful in naming objects when it is impossible to anticipate what
the current numeric identifier will be when the routine is called.

delobj
delobj() deletes an object:
delobj(Object obj)

The system frees all memory storage associated with the deleted object. The
numeric identifier is undefined until it is reused to create a new object. The
system ignores calls to deleted or undefined objects.

Working with Objects

16.2.1

You can draw, modify, and delete objects. The following sections describe
those operations.

Drawing an Object

Once you create an object, you can draw it with a single callobj() command.

callobj() draws a created object on the screen:
void callobj(Object obj)

Graphical Objects

The argument obj takes the numeric identifier of the object you want to draw.

Use callobj() to call one object from inside another. You can draw more
complex pictures when you use a hierarchy of simple objects. For example, the
program below uses a single callobj(pearl) to draw the object, a string of
pearls, by calling the previously defined object pearl seven times.

Object pearl = 1, pearls = 2
makeobj(pearl);
color(BLUE);
for(angle=0; angle<3600; angle=angle+300) {
rotate(300, 'y");
circ(0.0, 0.0, 1.0);
}
closeobj();
makeobj(pearls);
for(i=0; i<7; i=i+1) {
translate(2.0, 0.0, 0.0);
color(i);
callobj(pearl);

closeobj();

The system does not save global attributes before callobj() takes effect.
Thus, if an attribute, such as color, changes within an object, the change can
affect the caller as well. You can use pushattributes() and

popattributes() to preserve global attributes across callobj()

As another example of using simple objects to build more complex objects, a
solar system can be defined as a hierarchical object. Calling the object
solarsystem draws all the other objects named in its definition (the sun, the
planets and their orbits.

When you call a complex object, the system draws the whole hierarchy of
objects in its definition. Because the system draws the whole object solarsystem
it can draw objects that are not visible in the viewport.

Operations known as pruningand culling guarantee that only the objects that fit
within the viewport are drawn. Culling determines which parts of the picture
are less than the minimum feature size, and thus too small to draw on the
screen. Pruning calculates whether an object is completely outside the
viewport.

Graphics Library Programming Guide 16-5

16-6

Figure 16-2 shows the solar system. The diagram below the solar system is a
hierarchy diagram, also called a tree. Branches in the tree represent calling
subroutines.

filled circle

circle
planets % filled circle
circle

solarsystem — sun —— gphere

\ fl”@d circle
planets< circla

filled circle
circle

Figure 16-2 Drawing a Hierarchical Object

Graphical Objects

16.2.2 Bounding Boxes

Bounding boxes can be used to surround objects with irregular surfaces to
make it easier to test them for pruning and culling.

Figure 16-3 shows some of the solarsystenobjects surrounded by their
bounding boxes. The bounding boxes can perform pruning to determine
which objects are partially within the viewport.

2D bounding boxes

2,

Figure 16-3 Bounding Boxes

K

bbox2

bbox2() determines whether or not an object is within the viewport, and
whether it is large enough to be seen, by performing pruning and culling:

void bbox2(Screencoord xmin, Screencoord ymin,
Coord x1, Coord y1, Coord x2, Coord y2)

bbox2() takes as its arguments an object space bounding box (x1, y1, X2, ypin
object coordinates, and minimum horizontal and vertical feature sizes (xmin,
ymin)in pixels. The system calculates the bounding box, transforms it to screen
coordinates, and compares it with the viewport. If the bounding box is
completely outside the viewport, the subroutines between bbox2 and the end
of the object are ignored.

Graphics Library Programming Guide 16-7

16-8

16.2.3

If the bounding box is within the viewport, the system compares it with the
minimum feature size. If it is too small in both the x and y dimensions, the rest
of the subroutines in the object are ignored. Otherwise, the system continues
to interpret the object.

Editing Objects

You can change an object by editing it. Editing requires that you identify and
locate the drawing subroutines you want to change. You use two types of
subroutines when you edit an object:

edit add, remove, or replace drawing subroutines

tag identify locations of drawing subroutines within an object
If you have to edit graphical objects frequently, you should build your own
custom data structures and traversal subroutines, rather than use graphical

objects. The editing subroutines that follow are best suited for infrequent and
simple editing operations.

editobj

To open an object for editing, use editobj()

void editobj(Object obj)

A pointer acts as a cursor that appends new subroutines. The pointer is
initially set to the end of the object. The system appends graphics subroutines
to the object until either a closeobj() or a pointer positioning routine
objdelete() , (objinsert() , Or objreplace()) executes.

The system interprets the editing subroutines following editobj() . Use

closeobj() to terminate your editing session. If you specify an undefined
object, an error message appears.

getopenobj

To determine if any object is open for editing, use getopenobj()

Object getopenobj(void)

If an object is open, it returns the object's id. It returns -1 if no object is open.

Graphical Objects

16.2.4 Using Tags

Tags locate items within a graphical object that you want to edit. Editing
subroutines require tag names as arguments. STARTTAGS a predefined tag that
goes before the firstitem in the list; it marks the beginning of the list. STARTTAG
does not have any effect on drawing or modifying the object. Use it only to
return to (find) the beginning of the list.

ENDTAG S a predefined tag that is positioned after the last item on the list; it
marks the end of the list. Like STARTTAGENDTAGoes not have any effect on
drawing or modifying the object. Use it to find the end of the graphical object.
When you call makeobj() to create a list, STARTTAGNd ENDTAGutomatically
appear. You cannot delete these tags. When an object is opened for editing,
there is a pointer at ENDTAGjust after the last routine in the object. To perform
edits on other items, refer to them by their tags.

maketag

You can use tags to mark items you may want to change. You explicitly tag
subroutines with maketag()

void maketag(Tag t)

Specify a 31-bit numeric identifier for t. The system places a marker (tag)
between two items. You can use the same tag name in different objects.

newtag
newtag() also adds tags to an object, but uses an existing tag to determine its

relative position within the object. newtag() creates a new tag that is offset
beyond the other tag by the number of lines given in its argument offst.:

void newtag(Tag newtg, Tag oldtg, Offset offst)

istag

istag() tells whether a given tag is in use within the current open object:

Boolean istag(Tag t)

istag() returns TRUE if the tag is in use, and FALSE if it is not. The result is
undefined if there is no currently open object.

Graphics Library Programming Guide 16-9

16-10

16.2.5

gentag

gentag() generates a unique integer to use as a tag within the current open
object:

Tag gentag(void)

deltag

deltag() deletes tags from the object currently open for editing:

void deltag(Tag t)

Note: You cannot delete the special tags STARTTAGiNd ENDTAG

Inserting, Deleting, and Replacing within Objects

The subroutines objinsert() , objdelete() , and objreplace() allow you to
add, delete, or replace subroutines in a graphical object.

objinsert

Use obijinsert() to add subroutines to an object at the location specified in t.;
void objinsert(Tag t)

ohjinsert() positions an editing pointer on the tag you specify in t. The
system inserts graphics subroutines immediately after the tag. To terminate

the insertion, use closeobj() or another editing routine (objdelete()
objinsert() , objreplace()).

objdelete

objdelete() removes subroutines from the current open object:

void objdelete(Tag tagl, Tag tag2)

objdelete() removes everything between tagl and tag2, deletes subroutines
and other tag names, and leaves the pointer at the end of the object after it

executes. For example, objdelete(STARTTAG, ENDTAG) deletes every
drawing routine. objdelete() is ignored if no object is open for editing.

Graphical Objects

objreplace

objreplace() combines the functions of objdelete() and objinsert()

void objreplace(Tag t)

This provides a quick way to replace one drawing routine with another that
occupies the same amount of space in the graphical object. Its argument is a
single tag, t. Graphics subroutines that follow objreplace() overwrite
existing subroutines until a closeobj() or editing routine (objinsert() ,
objreplace() , objdelete()) terminates the replacement.

Note: objreplace() requires that the new routine to be exactly the same
length in characters as the previous one. Use objdelete() and
objinsert() for more general replacement.

Example—Editing an Object

The following is an example of object editing. First, the object star is defined:

makeobij(star);
color(GREEN);
maketag(BOX);
recti(1, 1, 9, 9);
maketag(INNER);
color(BLUE);
poly2i(8, Inner);
maketag(OUTER);
color(RED);
poly2i(8, Outer);
maketag(CENTER);
color(YELLOW);
pnt2i(5, 5);
closeobj();
editobj(star);
circi(1, 5, 5);
objinsert(BOX);
recti(0, 0, 10, 10);
objreplace(INNER);
color(GREEN);
closeobj();

Graphics Library Programming Guide 16-11

16-12

16.2.6

The object resulting from the editing session is equivalent to an object created
by the following code:

makeobij(star);
color(GREEN);
maketag(BOX);
recti(0, 0, 10, 10);
recti(1, 1, 9, 9);
maketag(INNER);
color(GREEN);
poly2i(8, Inner);
maketag(OUTER);
color(RED);
poly2i(8, Outer);
maketag(CENTER);
color(YELLOW);
pnt2i(5, 5);
circi(1, 5, 5);

closeobj();

Managing Object Memory

Editing can require large amounts of memory. The subroutines compactify()
and chunksize() perform memory management tasks.

compactify

As memory is modified by the various editing subroutines, an open object can
become fragmented and be stored inefficiently. When the amount of wasted
space becomes large, the system automatically calls compactify() during the
closeobj() operation.

compactify() allows you to perform the compaction explicitly:

void compactify(Object obj)

Unless you insert new subroutines in the middle of an object, compaction is
not necessary.

Note: compactify() uses a significant amount of computing time. Do not

call it unless the amount of available storage space is critical; use it
sparingly when performance is a consideration.

Graphical Objects

chunksize

chunksize() lets you specify the minimum chunk of memory necessary to
accommodate the largest number of vertices you want to call:

void chunksize(long chunk)

If there is a memory shortage, you can use chunksize() to allocate memory
for an object. chunksize() specifies the minimum amount of memory that the
system allocates to an object. The default chunk is 1020 bytes. When you specify
chunk, its size should vary according to the needs of the application. As the
object grows, more memory is allocated in units of size chunk. Call

chunksize() only once after winopen() , and before the first makeobj()

16.2.7 Mapping Screen Coordinates to World Coordinates

This section describes how to map screen coordinates to world coordinates.

mapw

mapw() takes a 2-D screen point and maps it onto a line in 3-D world space. Its
argument vobj contains the viewing, projection, and viewport transformations
that map the current displayed objects to the screen.

mapw() reverses these transformations and maps the screen coordinates back
to world coordinates. It returns two points (wx1, wyl,wz1) and (x2, wy2, wz2),
which specify two different points on the line. The length of the line is
arbitrary. sx and sy specify the screen point to be mapped.

void mapw(Obectvohy, Screencoord s, Screencoard sy, Coord *wx,Coord *wyl,
Coord*wz1, Coord w2, Coord *wy2, Coord “wz2)

mapw?2

mapw2() is the 2-D version of mapw() . In two dimensions, the system maps
screen coordinates to world coordinates rather than to a line. Again, vobj
contains the projection and viewing transformations that map the displayed
objects to world coordinates; sx and sy define screen coordinates. wx and wy
return the corresponding world coordinates. If the transformations in vobj are
not 2D (i.e., not orthogonal projections), the result is undefined.

void mapw2(Object vobj, Screencoord sx, Sareencoord sy, Coord *wx,Coord)

Graphics Library Programming Guide 16-13

16-14 Graphical Objects

