Arbitration
When multiple devices need to use the Micro Channel bus at the same
time, these devices participate in arbitration. Every device that
can arbitrate for control of the bus is assigned a priority level, known
as an arbitration level, that is used to determine which device should
control the bus next. The arbitration level for each device is contained
in a software file, known as an adapter description file (ADF).
Note: Devices
that contend for control of the Micro Channel bus at the same time must
not have the same arbitration level. Occasionally, arbitration-level conflicts
occur between devices. When this occurs, you can use the system programs
to change the arbitration level of one of the conflicting devices.
Micro Channel architecture has a fairness
feature, which ensures that each device gets a turn to control the bus,
even if it has a low priority level. The fairness feature guarantees
that none of the devices are locked out of the bus and that each device
can gain control of the bus within a given amount of time. When you
configure your server, you can disable the fairness feature for a device
so that it controls the bus more than other devices. A device for
which fairness has been disabled can monopolize the bus. Disabling
the fairness feature for more than one device is risky. You could
cause some devices for which the fairness feature is enabled to be completely
locked out of the bus, including the microprocessor. Therefore, it
is best to leave the fairness feature enabled for all devices.
The central arbitration control point is a location in
the system master where contending devices send their arbitration signals.
It does not actually decide which device should control the Micro Channel bus;
the contending devices make that determination among themselves, using the
arbitration logic that is programmed into the devices. However, it is the
central arbitration control point that actually grants control after the
decision is made.
Burst Data Transfer
In non-Micro Channel servers, transferring each byte of
data is a two-step process. First, the microprocessor signals that
it is going to send a byte of data. Then it sends the byte and signals
that it is going to send the next byte. The microprocessor cannot
perform any other tasks while it is managing a data-transfer operation
in this way. Micro Channel architecture supports burst data transfers,
in which data is sent in multiple bytes without intervention by the
microprocessor. This improves system performance and allows faster data
transfers between devices.
In some servers, data from the hard disk is moved into
a buffer on the hard-disk controller before it is transferred across the
bus. (A buffer is a temporary storage space that compensates for
a difference in the rate of data flow when data is transferred from one
device to another.) Micro Channel architecture allows burst data
transfers from the hard disk to memory, without placing the data in a buffer
on the hard-disk controller.
Bus Parity Checking
Bus parity checking is a method of verifying that data
has not been changed during a data-transfer operation. Bus parity
checking uses an extra bit, known as a parity bit, that is sent with each
byte of data as it is transferred across the bus. The parity bit
is set to 1 or 0 so that each byte has an odd number of 1's (if the server
uses odd parity) or an even number of 1's (if the server uses even parity).
If the parity (odd or even) of the received byte does not match the parity
of the byte as it was sent, an error occurred during transmission and the
receiving device can request that the data be sent again.
Bus parity checking has become a common feature in most
servers. It is not 100% accurate, but it greatly reduces the chance
for errors. It is essential for most operations because of fast I/O
devices, complex I/O configurations, and large memory subsystems.
Channel Check Reporting and Error Logging
Errors can occur not only during data-transfer operations,
but also while data is stored in system memory. The contents of a
memory location can be changed accidentally, a memory module can be defective,
or other hardware failures can occur in the server.
Your server uses channel-check reporting to detect hardware
errors and error logging to record the errors. These records can
be used to diagnose and correct problems in the server.
The channel-check reporting facility automatically locates
random and intermittent errors while your server is operating. Information
about any failing component is saved in the error log so that you can identify
and replace the failing component.
Direct memory access (DMA)
Direct memory access (DMA) is a method of transferring
data between system memory and I/O devices without requiring intervention
by the microprocessor. DMA is more efficient than programmed I/O,
in which the microprocessor reads the data from the sending device and
then writes it to the receiving device. In DMA data transfers, data
can bypass the system microprocessor as it moves between system memory
and I/O devices. DMA improves server performance because the microprocessor
does not have to interrupt its processing activities to manage data transfers.
The DMA controller
is integrated into the processor board and manages all DMA data transfers.
Transferring data between system memory and an I/O device requires two
steps. Data goes from the sending device to the DMA controller and
then to the receiving device. The microprocessor gives the DMA controller
the location, destination, and amount of data that is to be transferred.
Then the DMA controller transfers the data, allowing the microprocessor
to continue with other processing tasks.
When a device needs to use the Micro Channel bus to send
or receive data, it competes with all the other devices that are trying
to gain control of the bus. This process is known as arbitration.
The DMA controller does not arbitrate for control of the bus; instead,
the I/O device that is sending or receiving data (the DMA slave) participates
in arbitration. It is the DMA controller, however, that takes control
of the bus when the central arbitration control point grants the DMA slave's
request.
Data bus parity support
Provides for the verification of correct data as it
is transferred between the processor and memory and over the Micro Channel.
All data moved between individual components on the Processor Complex use
this feature (processor, memory controller DMA, Micro Channel controller).
ECC
Memory controller which will automatically correct any single
bit errors on the fly (98% of memory errors are single bit); all 2 bit errors
are found which halt system; some 3 and 4 bit errors are found which halt
system; single bit errors are logged with optional software (NetFinity?) and
multiple bit errors are logged in NVRAM.
Vital Product Data (VPD)
Allows software (LAN Network Manager,
LAN Mgmt Utilities/2) to obtain a unique serial number (identifier) on
the processor complex which is in ROM (like Base 3). Also provides unique
ID (model/submodel), type/model/ serial number, manufacturing ID, planar
FRU number, and planar part number.
This system provides a means of storing and retrieving vital product
data (VPD). Vital-product data contains product-specific information that
describes various adapters and components within a system. This information
can be used in inventory and asset management.
In contrast to system configuration information, which is related to
resource allocation, vital-product data contains information related to
the physical characteristics, such as part number, engineering level, and
product name. For example, the vital-product data for the Server
95 system consists of the model and submodel bytes, the system type number,
the system serial number. The vital-product data for the system board
includes the system board serial number, a replaceable-unit part number,
and the manufacturing location. The vital-product data for the processor
complex includes the replaceable-unit part number, a unique part identifier,
and the manufacturer ID.
The VPD information for the system, system board, and any installed
options that also provide vital-product data can be read using BIOS calls
or operating-system utilities (if they are provided). For more information,
refer to Interrupt 15H, Vital Product Data System Service ((AH)=D2H) in
the IBM Personal System/2 and Personal Computer BIOS Interface Technical
Reference.
40 MB/s Streamers
IBM 32-bit MCA busmasters that support 40 MB/s streaming:
Masters
A master is a device that can own the Micro Channel bus.
When a master owns the bus, it can send data to or receive data from a
slave (a device, an adapter, or system memory) without interrupting the
microprocessor. There are three types of masters: the system
master, bus masters, and the DMA controller.
System Master
The system master assigns system resources, manages the
system configuration, issues the commands of the primary operating system,
and can grant control of the Micro Channel bus to a bus master.
Bus Master
Your server supports up to 15 bus masters. Bus masters
take control of the Micro Channel bus and transfer data directly to and
from I/O devices and memory without requiring intervention by the system
microprocessor or DMA controller.
A bus master can have its own microprocessor, instruction
cache, and memory. By taking over some of the work of the system
microprocessor, bus masters create a multiprocessing environment and increase
overall system performance.
DMA Controller
The DMA controller manages data transfers between DMA
slaves and memory slaves. This type of transfer is often called a
third-party DMA operation. See Direct Memory Access Controller and
Direct Memory Access for more information.
Slaves
A slave is a device that is selected by a controlling
master as either the source or the target for a transfer. A slave
can also begin a service request, such as an interrupt. There are
three types of slaves: memory, I/O, and DMA.
Memory Slave
A memory slave is a device that provides a block of system
memory. Memory slaves respond to read and write operations by placing
the requested data on the Micro Channel bus or by writing data from the
bus to random access memory (RAM). A memory slave can be selected
by any of the three types of Micro Channel masters.
I/O Slave
An I/O slave is a device that communicates with or controls
a separate piece of equipment, such as a printer. An I/O slave can be selected
by the system master or by a bus master.
DMA Slave
A DMA slave is the only type of slave that can initiate arbitration.
DMA slaves require the DMA controller to manage data transfers. A
DMA slave can be selected by the DMA controller or by a bus master.
Streaming data transfer
The streaming-data procedure allows high-speed transfer
of data between bus masters and slaves. This procedure supports high-speed
transfers of large blocks of data for devices such as hard disk drives
and network adapters.
The streaming-data procedure transfers blocks of sequentially
stored data. In basic data-transfer operations, a target address
is assigned for every byte of data that is transferred. The streaming-data
procedure assigns a target address only to the first byte of data, and
the rest of the data in the block follows in sequence and is assigned to
sequential addresses. A streaming-data transfer operation takes 100
nanoseconds to send 4 bytes of data. This is a data-transfer rate
of 40 million bytes per second, which is twice as fast as basic data-transfer
operations.
The Micro Channel bus has 32 data lines and 32 address
lines. During streaming-data transfer operations, the 32 address
lines are used only at the beginning of a transfer cycle. Then they
remain idle for the rest of the cycle. The multiplexed streaming-data procedure
uses the address bus as another 32-bit data bus, allowing data to be transferred
64 bits at a time.
More information about the various streaming transfer cycles
can be found HERE.
Subsystem Control Block (SCB)
Provides for the enhanced transfer of command, data, and
status information between busmasters (and between busmasters and the system
processor) to give increased performance. Capabilities such as command
chaining, data chaining, and block data moves frees the processor from
waiting for command completion before issuing the next command and frees
the processor for other tasks while a busmaster operates in parallel. Adapters
and device drivers must support this feature (many do today).
More information about SCB can be found
HERE.
Synchronous Channel Check
Support provides for the signaling of errors synchronously
with the transfer in progress. Adapters and device drivers must be designed
to support this feature (none do today).
|